進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1408201001485600
論文名稱(中文) 添加釩對鈦-鋁-鉬合金機械性質與鑄造性的影響
論文名稱(英文) Effect of Vanadium Addition on Mechanical Properties and Castability of Ti-Al-Mo Alloys
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 臧啟中
研究生(英文) Chi-Chung Tsang
學號 n5696431
學位類別 碩士
語文別 中文
論文頁數 144頁
口試委員 指導教授-陳瑾惠
指導教授-朱建平
口試委員-林家緯
中文關鍵字 高爾夫球頭  鈦合金  鑄造性  熱滾軋 
英文關鍵字 alpha case  golf head  castability  hot rolling 
學科別分類
中文摘要 現今高爾夫球頭設計上之重點,為了增加甜蜜點範圍而使得球頭大體積化。大體積球頭於擊球時,可容易擊中高爾夫球及得到較好的球頭慣性矩。而為了增加甜蜜點範圍,球頭材質設計必頇具備輕量及高強度等特性。而大部分的鈦合金跟不鏽鋼相較具有相同強度,但重量卻少了40%。
本實驗先研究鉍的添加對鈦合金X 合金系統的鑄造性影響。證明了鉍的添加降低Ti-Al-Mo 合金系統的鑄造性後,測量鈦合金X 及鈦合金Y 合金經由陶瓷殼模鑄造和熱滾軋兩種製程的機械性質,並以微硬度測量隨鑄造產生的α case 厚度,對照商用合金Ti-6Al-4V以找出最適合於在工業上使用之高爾夫球頭及打擊面上之新型合金。
實驗結果顯示, 鈦合金Y 經由鑄造和熱壓兩種製程,有最佳的拉伸性質,卻有最低的延伸率;鈦合金X 有與Ti-6Al-4V 相當的降伏強度且較高的拉伸強度,而延伸率也為三者中最高的10%。微硬度測試顯示陶瓷殼模鑄造產生的鈦合金Yα case 厚度較高,但在經熱滾軋後差異就不明顯。
英文摘要 Recently, the golf heads design focuses on magnifying their size in order to increase the sweet spot area. By this, it is easier for the golfer driving the ball farther and straighter. Less weight, low density, high strength, and high elasticity are the important conditions for golf head materials. Most titanium alloys possess the same strength as common grades of stainless steel, but are 40% less dense (the weight per volume area).
First, the effects on the castability of Ti-Al-Mo alloy of the bismuth(Bi) addition are examined. After getting the conclusion that the addition of bismuth reduce the castability of Ti-Al-Mo alloy, the mechanical properties of Ti-alloy X and Ti-alloy Y alloys fabricated by investment-casting and hot rolling were investigated individually, and the thicknesses of αcase of Ti-alloy which is produced as casting are examined as well.
Compare with commercial alloy Ti-6Al-4V, experimental esults of mechanical properties indicate that Ti-alloy X possesses equivalent yielding strength and higher ultimate tensile strength and ductility; Ti-alloy Y possesses the best tensile strength, but the lowest ductility.
Passing through investment-casting, Ti-alloy Y possesses heavierαcase; passing through hot rolling, the thicknesses of αcase have no difference between Ti-alloy X and Ti-alloy Y .
論文目次 總 目 錄
中 文 摘 要............................................................................................... I
Abstract ...................................................................................................... II
致 謝 ......................................................................................................... III
總 目 錄 .................................................................................................. IV
圖 目 錄 ................................................................................................ VIII
表 目 錄 ............................................................................................... XIV
第一章 前言 ............................................. 1
1-1 研究背景 ......................................... 1
1-2 國內鈦金屬產業概論 ............................... 4
1-3 高爾夫球頭材料概論 ............................... 5
1-4 鈦合金鑄造性質對高爾夫球頭的影響 ................. 9
1-4-1 高爾夫球頭幾何專有名詞及其功能性簡略說明 .... 9
1-4-2 鈦合金鑄造性與高爾夫球頭材料發展趨勢之關係 . 12
1-5 釩與鋁元素在鈦合金上的應用 ....................... 12
1-5-1 金屬釩 .................................... 12
1-5-2 金屬鋁 .................................... 13
1-5-3 商用鈦合金Ti-6Al-4V與鈦合金Y ............. 14
1-6 市面上鈦合金高爾夫球頭及新開發之材質 ............. 17
1-7 研究動機 ......................................... 20
第二章 理論基礎 ........................................ 26
2-1 純鈦的性質 ...................................... 26
2-2 純鈦及鈦合金的冶金學 ............................ 27
2-2-1 純鈦 ...................................... 27
2-2-2 鈦合金 .................................... 31
2-3 金屬之強化機構 .................................. 39
2-3-1 應變硬化 (Strain Hardening) .................. 39
2-3-2 固溶強化 (Solid Solution Strengthening ) ........ 40
2-3-3 細晶尺寸強化 (Grain Size Strengthening) ........ 44
2-4 拉伸破斷機構 (Tensile Fracture Mechanism) ........... 44
2-4-1 脆性破裂 (Brittle fracture) .................... 46
2-4-2 延性破裂 (Ductile fracture) ................... 47
2-5 鈦高爾夫球頭的製程與產品分類 .................... 50
2-6 精密鑄造法 ...................................... 52
2-6-1 包埋鑄造法 ................................ 54
2-6-2 實體陶模法和陶瓷殼模法製程步驟 ............ 56
2-7 金屬鑄造性 (Castability) ............................ 59
2-7-1 金屬流動性 (Fluidity) ......................... 60
2-7-2 金屬流動性試驗法 ........................... 60
2-7-3 影響金屬流動性的因子 ...................... 65
2-8 Alpha Case ....................................... 70
第三章 實驗步驟 ........................................ 75
3-1 實驗流程 ........................................ 75
3-2 合金材料及配置 .................................. 76
3-3 合金熔煉與鑄造設備 .............................. 77
3-4 合金鑄造 ........................................ 81
3-5 滾軋製程 ........................................ 84
3-6 試片成型製程 .................................... 85
3-7 拉伸測試 ........................................ 86
3-8 維氏硬度測試 (Vickers Hardness test,Hv) ............ 87
3-9 鑄造性測試 ...................................... 89
3-10 金相顯微組織觀察 ............................... 93
3-11 X光繞射相分析(X-Ray Diffraction,XRD) ........... 94
3-12 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)觀察與能量散佈分析儀(Energy Dispersive Spectrometer,EDS)合金成分分析 ................................... 95
第四章 實驗結果與討論 .................................. 98
4-1 合金成分分析 .................................... 98
4-2 陶瓷殼模鑄造之合金鑄造性比較 ................... 100
4-3 陶瓷殼模鑄造之合金機械性質比較 ................. 105
4-3-1 相結構分析及金相顯微組織分析 ............. 106
4-3-2 拉伸性質與拉伸破斷面分析 ................. 111
4-3-3 維氏硬度分析與鈦合金Alpha Case分析 ....... 117
4-4 熱滾軋加工製程對鈦合金的機械性質影響 ........... 120
4-4-1 熱滾軋厚度縮減率 ......................... 120
4-4-2 相結構分析及金相顯微組織分析 ............. 123
4-4-3 拉伸性質與拉伸破斷面分析 ................. 128
4-4-4 維氏硬度分析與鈦合金Alpha ................ 134
第五章 結論 ........................................... 137
第六章 參考文獻 ....................................... 139
圖 目 錄
圖1-1 高爾夫球頭慣性矩與甜蜜點 (謝文隆,2008) ...................... 11
圖1-2 打擊面甜蜜點外的位置 (Tomas Wishon et al.,2006) .......... 11
圖1- 3 純鈦添加1%合金元素鑄造性質測試 (鄭文偉,2002) ........ 22
圖1- 4 Ti-Al-Mo系列合金的機械性質測試 (吳政穎,2008) ........ 23
圖1-5 Ti-Al-Mo系列合金的鑄造性質測試 (吳政穎,2008) ......... 23
圖2-1 純鈦的同素異構體 (William F. Smith,1993) ........................ 28
圖2-2 α鈦的滑移系統和雙晶面 (賴耿陽,1990) ......................... 30
圖2-3 bcc-to-hcp 結晶結構變化的Burger,s機構 (Nishiyama,1978) ................................................................................................................... 30
圖2-4 α、β型鈦合金添加合金相圖 (Molchanova, E. K.,1965) 32
圖2-5 α穩定元素對相變化溫度效應的示意相圖 (William F. Smith,1993) ......................................................................................................... 34
圖2-6 β型鈦合金的相帄衡圖 (a)類質同型系帄衡相圖(b)共析系帄衡相圖(Collings,1984) .......................................................................... 36
圖2-7 鈦-鉬二元相圖 (Murray,1987) .............................................. 37
圖2-8 鈦-鐵二元相圖 (Murray,1987) .............................................. 37
圖2-9 Ti-6Al-4V相圖及形成微結構的示意圖 (林家緯,2004) ..... 38
圖2-10 加工硬化使金屬塑性變形所需之應力,會隨應變之增加而增
大(李正中,2001) .................................................................................. 40
圖2-11 Cu合金固溶不同之溶質原子 (a)溶質原子比溶劑原子大時,晶格扭曲產生壓縮應變場 (b)溶質原子比溶劑原子小時,晶格扭曲產生拉伸應變場(李正中,2001) .............................................................. 43
圖2-12 銅合金中不同溶質原子及其含量對銅合金強度之影響 (李正中,2001)............................................................................................. 43
圗2-13 單軸拉伸金屬時發生破壞之示意圖 (李正中,2001) (a)單晶易滑移後的韌斷 (b)單晶多重滑移後之韌斷 (c)單晶或多晶的脆性破裂 (d)多晶的延性破裂,形成杯(cup)和錐(cone) .......... 45
圖2-14 延性破裂中的空孔-薄板機構 (Reed-Hill,1994) ................ 48
圗2-15 杯和錐(cup and cone)破裂之示意圖 (Reed-Hill,1994) ..... 48
圗2-16 拉伸應力-應變曲線,(A)、(B)為脆性破斷,(C)為延性破斷(Reed-Hill,1994) .................................................................................... 49
圖2-17 延性破裂面的韌窩圖 (Reed-Hill,1994) ............................. 49
圖2-18實體陶模法 (林宗獻,1986) .............................................. 57
圖2-19陶瓷殼模法 (林宗獻,1986) ................................................... 58
圗2-20 楔型流動性試驗砂模 (賴耿陽,1977) ................................ 61
圗2-21 螺旋流動性測試 ................................................................... 63
圗2-22 真空流動性測試 ................................................................... 63
圗2-23 其他流動性測試法 ............................................................ 64
圗2-24 鈦合金拉伸延性與Alpha Case厚度之關係(KWAI S. CHAN et al.,2008) ............................................................................................. 72
圗2-25 鈦合金表面微硬度與磨耗性質之關係(KWAI S. CHAN et al.,2008) ................................................................................................. 72
圗2-26 液相鈦冷卻速率與Alpha Case厚度之關係(KWAI S. CHAN et al.,2008) ............................................................................................. 73
圗2-27 鑄件厚度與Alpha Case厚度之關係之一(KWAI S. CHAN et al.,2008) ................................................................................................. 73
圗2-28 鑄件厚度與Alpha Case厚度之關係之二(KWAI S. CHAN et al.,2008) ................................................................................................. 74
圖3-1 實驗流程圖 ................................................................................ 75
圖3-2 CASTMATIC鑄造機示意圖 .................................................... 79
圖3-3 石墨模具示意圖 ........................................................................ 82
圖3-4(a) 氧化鋯陶瓷殼模側視圖 ........................................................ 83
圖3-4(b) 氧化鋯陶瓷殼模俯視圖 ....................................................... 83
圖3-5 100噸滾壓機 ............................................................................. 85
圖3-6 試片形狀與規格 ........................................................................ 86
圖3-7 日本Shimadzu公司動態疲勞試驗機 ...................................... 87
圖3-8 維氏硬度試驗機 ........................................................................ 89
圖3-9 鑄造性測試純鈦支架 ................................................................ 91
圖3-10 鑄造性測試用長方型蠟片及釣魚線 ...................................... 91
圖3-11 鑄造性測試完整型支架 .......................................................... 92
圖3-12(a) 鑄造性測試用陶瓷殼模側視圖 ......................................... 92
圖3-12(b) 鑄造性測試用陶瓷殼模俯視圖 ......................................... 93
圖3-13 X光繞射儀 .............................................................................. 95
圖3-14 環境式電子顯微鏡 .................................................................. 97
圖4-1 Ti-Al系列合金添加釩與a的鑄造性測試結果一 ................ 102
圖4-2 Ti-Al系列合金添加釩與a的鑄造性測試結果二 ................ 103
圖4-3 鈦合金X與鈦合金Y合金的鑄造性測試結果 .................... 103
圖4-4 表面張力測量之鑄錠尺寸測量示意圖 .................................. 104
圖4-5 合金鑄造帄均實驗操作時間和殼模實際溫度下降示意圖 .. 106
圖4-6 陶瓷殼模鑄造鈦合金X與鈦合金Y合金之XRD分析圖 . 108
圖4-7 陶瓷殼模鑄造鈦合金X之橫截面微觀組織,(A)為200X,(B)為500X ................................................................................................... 109
圖4-8 陶瓷殼模鑄造鈦合金Y之橫截面微觀組織,(A)為200X,(B)為500X ................................................................................................... 110
圖4-9 陶瓷殼模鑄造鈦合金X、鈦合金Y合金之拉伸性質比較圖
................................................................................................................. 113
圖4-10 陶瓷殼模鑄造鈦合金X、鈦合金Y合金之彈性模數比較圖 ................................................................................................................. 114
圖4-11 陶瓷殼模鑄造之鈦合金X合金之拉伸破斷面SEM分析,(A)為40X、(B)為1000X ........................................................................... 115
圖4-12 陶瓷殼模鑄造之鈦合金Y合金之拉伸破斷面SEM分析,(A)為40X、(B)為1000X ........................................................................... 116
圖4-13 陶瓷殼模鑄造之鈦合金硬化層(α case)金相照片 ............. 118
圖4-14 陶瓷殼模鑄造鈦合金X及鈦合金Y合金微硬度與表面深度關係 ............................................................................................................. 119
圖4-15 陶瓷殼模鑄造鈦合金X及鈦合金Y合金之體硬度比較圖 ................................................................................................................. 119
圖4-16 鈦合金X、鈦合金Y合金經過一階段熱滾軋之XRD分析圖 ................................................................................................................. 125
圖4-17 鈦合金X經過一階段熱滾軋加工之橫截面的微觀組織,(A)為200X、(B)為500X ........................................................................... 126
圖4-18 鈦合金Y經過一階段熱滾軋加工之橫截面的微觀組織,(A)為200X、(B)為500X ........................................................................... 127
圖4-19 鈦合金X、鈦合金Y系列合金經過一階段熱滾軋加工之拉
伸性質比較圖......................................................................................... 130
圖4-20 鈦合金X、鈦合金Y系列合金經過兩階段熱滾軋加工之彈
性模數比較圖......................................................................................... 131
圖4-21 鈦合金X合金經一階段熱滾軋加工之拉伸破斷面SEM分析,(A)為40X、(B)為1000X ...................................................................... 132
圖4-22 鈦合金Y合金經一階段熱滾軋加工之拉伸破斷面SEM分析,(A)為40X、(B)為1000X ...................................................................... 133
圖4-23 經一階段熱滾軋之鈦合金硬化層(α case)金相照片 ......... 135
圖4-24 一階段熱滾軋鈦合金X及鈦合金Y合金微硬度與表面深度關係 ............................................................................................................. 136
圖4-25 一階段熱滾軋之鈦合金X及鈦合金Y合金之體硬度比較圖 ................................................................................................................. 136
表 目 錄
表1-1 美國USGS組織世界鈦生料生產量統計 (Lisa D. Miller,2009) ..................................................................................................................... 3
表1-2 高爾夫球頭材料發展沿革 .......................................................... 8
表1-3 2009/6/11國際金屬價格 ........................................................... 15
表1-4 鈦合金Y基本性質 ................................................................... 16
表1-5 美國USGS組織世界釩生產量預測 (Lisa D. Miller,2009) 24
表1-5 添加鉍對Ti-Al-Mo熔鍊合金鑄錠尺寸的影響 (吳政穎,2008) ................................................................................................................... 25
表2-1 鈦與其他金屬物理性質比較(侯貫智,2007) ........................ 27
表2-2 數種六方最密堆積金屬的c/a比值表(William F. Smith,1993) ................................................................................................................... 29
表2-3 鈦球頭種類及常見材質 (葉哲政,2004) .............................. 51
表2-4 各種精密鑄造法之比較 (林宗獻,1986) .............................. 53
表3-1 各種材料純度及來源 ................................................................ 77
表4-1 EDS成分分析結果 ................................................................... 99
表4-2 Ti-Al-Mo系列合金EDS成分分析結果 (2008,吳政穎) ... 99
表4-3 鈦合金X與鈦合金Y表面尺寸測量結果 ............................ 104
表4-4 鈦合金X與鈦合金Y經一階段熱滾軋的壓縮量 ................ 121
表4-5 經一階段熱滾軋的鈦合金試片照片一覽 ................................ 122
參考文獻 Bania, P. J., “Beta titanium alloys and their roles in the titanium
Industry”, Jom-Journal of the Minerals Metals & Materials Society, 46, 7,
16-19(1994)
Barreto, M. T., Goldberg, A. J., Nitkin, D. A. and Mumford, G., “Effect of
investment on casting high-fusing alloys”, The Journal of Prosthetic
Dentistry, 44, 5, 504-507(1980)
Bastien, P., Armbruster, J. C., Azou, P., “Flowability and Viscosity”,
Trans AFS, 70,400-409(1962)
Beach, Todd P., Anderson, David, Vincent, Benoit, “Golf club head”, US
patent number: US6991558, 29 Mar(2001)
Briggs, C. W., “Fluidity of Metals”, Metals Handbook, ASM International,
Metals Park, Ohio (1948)
Campbell, J., “Review of Fluidity Concepts in Casting”, Cast Metals, 7,
4,227-237(1994)
Chan, D., Guillory, V., Blackman, R. and Chung, K., “The Effects of
Sprue Design on the Roughness and Porosity of Titanium Castings”, The
Journal of Prosthetic Dentistry, 78, 4, 400-404(1997)
Chan, K. S., M. Koike, et al., “Modeling of alpha-case formation and its
effects on the mechanical properties of titanium alloy castings”,
Metallurgical and Materials Transactions a-Physical Metallurgy and
Materials Science, 39A (1): 171-180(2008)
Collings EW, “The physical metallurgy of titanium alloys, ASM Series in
Metal Processing”, Gegel HL, editor (1984)
Davis S, “Racket science applied to golf”, sample journal, volume:
33, issue: 4, pages: 61-67, Jul.-Aug. (1997)
Désirée E. Polyak, “2007 Minerals Yearbook”, USGS (2009)
Flemings, M. C., Mollard, F. R., Niiyama, E. F. and Tayler, H. F.,
“Fluidity of Aluminum”, Trans AFS, 70, 1029-1039 (1962)
Flemings, M. C., “Solidification Processing”, p.219, McGraw Hill, New
York, (1974)
Gorynin, I. V., “Titanium Alloys for Marine Application”, A263,112-116
(1999)
Hirano, S., Tesk, J. A., Hinman, R. W., Argentar, H. and Gregory, T. M.,
“Casting of Dental Alloys: Mold and Alloy Temperature Effects”, Dental
Materials, 3, 307-314 (1987)
Howard, W. S.; Newman, S. M. and Nunez, L., “Castability of Low Gold
Content Alloys”, Journal of Dental Research, 59, 5, 824-830 (1980)
Horton, R. A., “Investment casting”, Metal Handbook, 9th ed., vol. 15 ,
ASM International, Metal Park, Ohin (1985)
James FS, “Materials Science for Engineers”, p.212~218 (2000)
Lisa D. Miller, “2007 Minerals Yearbook”, USGS (2009)
Long, Dabbs Clayton, “Golf club head with improved weight
distributions”, US patent number: US6080069, 16 Jan. (1998)
Molchanova, E. K., “Phase Diagrams of Titanium Alloys”, Israel Program
for Scientific Translations, Jerusalem (1965)
Murray, J. L., “Phase Diagrams of Binary Titanium Alloys”, vol. 15,
ASM International, Metals Park, Ohio (1987)
Niesse, J. E., Flemings, M. C. Taylor, H. F., “Application of Theory in
Understanding Fluidity of Metals”, Trans AFS, 67, 685-796 (1959)
Nishiyama Z., “Martensitic Transformation”, Academic Press, New York,
(1978)
Polmear I J “Light alloys”, in Metallurgy of light metals (ed.) E Arnold
(London: Edward Arnold (Pub.) Ltd. ) pp 162-204 (1981)
Porter, L. F., Rosenthal, P. C., “Factors Affecting Fluidity of Cast Irons”,
Trans AFS, 60, 725-739 (1952)
Ragone, D. V., Adams, C. M. and Taylor, H. F., “A New Method for
Determining the Effect of Solidification Range on Fluidity”, Trans AFS,
64, 653-657 (1956)
Ragone, D. V., Adams, C. M. and Taylor, H. F., “Some Factors Affecting
Fluidity of Metals”, Trans AFS, 64, 640-652 (1956)
Reed Hill, R. E., “Physical Metallurgy Principles”, PWS, USA (1994)
Roach, Ryan L, Best, Christopher B, “Golf club head with undercut”, US
patent number: US7238119, 21 Apr. (2004)
Rosenberg, H. W., “Titanium Alloying in Theory and Metallurgy”, The
Science, Technology and Application of Titanium, Proc. first international
conference on titanium, London, edited by Jaffee and Promisel, Pergaman
Press (1956)
Rugge, Richard L, Hue, Jean, Wahlin, Richard S, Rose, David L,
“Metalwood golf club head”, US patent number: US5851160, 9 Apr.
(1997)
Saha, B., B. Jana, et al., “Development and certification of Ti-8Al-1V
alloy for HP Compressor blades for Adour engine applications.” Bulletin
of Materials Science 19(4): 661-669 (1996)
San Juan, Jon P, “Through channel back golf club head design”, US
patent number, US6001031, 20 Dec. (1996)
Stites III, John Thomas, “Steel golf club head having reduced face
thickness and optimum distributed mass”, patent number: 616599, 14 Jul
(2000)
Syverud, M. and Hero, H., “Mold Filling of Ti Castings Using
Investments with Different Gas Permeability”, Dental Materials, 11,
14-18 (1995)
Takahashi, J., Zhang, J. Z. and Okazaki, M., “Effect of Casting Methods
on Castability of Pure Titanium”, Dental Materials Journal, 12, 2,
245-252 (1993)
Tomas Wishon, Tom W. Wishon, Tom Grundner, “The search for the
perfect golf club” (2006)
Venkateswarlu K., Murty B. S., Chakraborty M., “Effect of hot rolling
and heat treatment of Al–5Ti–1B master alloy on the grain refining
efficiency of aluminium”, Department of Metallurgical and Materials
Engineering, Indian Institute of Technology, Kharagpur 721302, India
(2000)
Wakasa, K., Yoshida, Y., Ikeda, A. and Yamaki, M., “A Castability Test of
Experimental Apatite-Based Glass Ceramics for Small Castings”, Journal
of Material Science Letters, 13, 883-884 (1994)
William F. Smith, “Structure and Properties of Engineering Alloys”,
second edition (1993)
大前研一,「M 型社會」,商周出版 (2006)
李正中,「物理冶金學(上)」,國立台北科技大學材料及資源工程系,
448 (2001)
吳政穎,鈦-鉬-鋁-鉍合金機械性質之研究,國立成功大學材料工程
學系碩士論文 (2008)
林宗獻,「精密鑄造」,全華科技圖書股份有限公司 (1986)
林家緯,「鑄造鈦-鉬合金疲勞性質研究」,國立成功大學材料工程
學系博士論文 (2004)
侯貫智,「Special for Non-Ferrous Metals Yearbook」,金屬工業
研究發展中心非鐵金屬特輯 (2007)
葉哲政,「鈦合金在高爾夫球器材之應用市場分析」,金屬工業研究發
展中心 (2004)
鄭文偉,「添加合金元素對鈦或鈦合金鑄造性及性質研究」,國立成功
大學材料工程學系博士論文 (2002)
劉文海,「我國鈦合金需求持續成長」,金屬工業研究發展中心產業評
析(2005)
賴耿陽,「鑄造技術基礎」,復漢出版社 (1977)
賴耿陽,「金屬鈦理論與應用」,復漢出版社 (1990)
謝文隆,「複合材料高爾夫球桿頭之設計與擊球效果分析」,國立中山
大學機械與機電工程研究所碩士論文 (2007)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw