進階搜尋


下載電子全文  
系統識別號 U0026-1407201617443900
論文名稱(中文) 利用雙重兩極性尺度排序直覺式乘積偏好關係
論文名稱(英文) Ranking intuitionistic multiplicative preference relations using dual bipolar measures for decision-making problems
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 104
學期 2
出版年 105
研究生(中文) 甘哲瑋
研究生(英文) Che-Wei Kan
學號 R36034202
學位類別 碩士
語文別 中文
論文頁數 68頁
口試委員 指導教授-陳梁軒
口試委員-王泰裕
口試委員-施勵行
中文關鍵字 直覺式乘積偏好關係  雙重兩極性尺度  排序方式  決策者態度 
英文關鍵字 Intuitionistic multiplicative preference relations  Ranking  Dual bipolar measures 
學科別分類
中文摘要 直覺式乘積偏好關係(Intuitionistic multiplicative preference relation)為一項利用正負向資訊表達專家對方案偏好的決策工具,此決策模式共分為三個階段,在前置階段會將多位專家對方案的偏好意見以直覺式乘積偏好關係表示,架構出個別之偏好關係矩陣;第二階段則主要是利用整合方式針對專家的偏好意見結果進行整合。最後藉由整合的直覺式乘積偏好關係計算其排序,得出最終選出之方案。然而,現有之方法因著重的資訊不同,容易產生不同的排序結果,影響最終選擇的決策方案,因此如何全面考量正負向資訊及猶豫值為一個重要的議題。
本研究利用雙重兩極性尺度之構想,以轉換函數推導出直覺式乘積偏好關係的四種相對比較關係函數,透過這四種比較關係函數之性質,架構出評分函數及準確性函數作為此研究之排序方法,同時考量決策者對於比較關係之排序態度,使決策者能保有其排序態度上的彈性。利用所得之評分函數及準確性函數的散佈圖形分別對現有之方法與本研究進行分析比較,藉由此方式了解各方法之特性。在演算部分使用Xia et al.(2013)所提之中國國家氣象局評估例子作為最初演練之範例,透過不同範例之比較確立本研究之可行性;而在Jiang et al.(2015)及本研究的調整範例中,本研究之排序結果即使在範例些微調整後仍然保持其排序結果之一致性。
在決策者態度的部分,本研究可利用參考不同決策者對於比較關係的態度,涵蓋其他排序方法之結果,並表達其他排序方法在此範例中之比較特性,且在調整後之範例也可表達其他兩種方式未涵蓋之排序結果。同一範例,透過對決策者態度與其排序結果進行敏感度分析,了解在不同決策者態度下其排序結果,確立本研究可藉由決策者態度的調整來給予不同決策者表現不同著重面向之方法,且其排序結果具有排序之一致性。
英文摘要 In a decision making problem, preference relations are powerful techniques to express preferences over alternatives. Intuitionistic multiplicative preference relation (IMPR) was developed to deal with the complexity and uncertainty involved in the real-world. The preference information included in IMPRs contains three parts: preferred, not preferred and hesitation information, which are for the evaluation of comparing alternatives in pairs. IMPRs has three procedures for solving the decision making problems. This research focuses on ranking alternatives. By using dual bipolar measures, we develop the new score function and accuracy function of IMPR. Also, we consider the neutral attitude of the decision maker, which is the ratio of four IMPR basic functions. As mentioned, this research analyzes the distributions of each IMPR by our method and others. The distributions can determine the characteristics of each method.
In the first example from Xia et al. (2013), the result of the each method shows that each method has the same ranking result, and this indicates that our method is feasible. Besides, we utilize the special case from Jiang et al. (2015) and our research to compare all methods. Then we find that our method is consistent with two kinds of special cases. To determine the effects of neutral attitude, we conduct a sensitivity analysis. The results reveal that this research can contain other ranking results by different neutral attitudes which means that our research is more powerful than other ranking methods.
論文目次 摘要 I
Abstract II
誌謝 VI
目錄 VII
圖目錄 IX
表目錄 X
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究範圍 3
第四節 研究流程 3
第五節 論文架構 5
第二章 文獻探討 6
第一節 直覺式模糊理論 6
第二節 直覺式乘積偏好關係 9
第三節 排序方式 15
第四節 雙重兩極性尺度 22
第四節 小結 25
第三章 利用雙重兩極性尺度排序直覺式乘積偏好關係 27
第一節 研究構想 27
第二節 模式建構與求解 30
第三節 小結 41
第四章 範例演算 43
第一節 範例演練 43
第二節 排序一致性討論 52
第三節 決策者態度討論 57
第四節 小結 63
第五章 結論與未來研究方向 64
第一節 研究成果 64
第二節 未來方向 65
參考文獻 66
參考文獻 Aczél, J. (1966). Lectures on Functional Equations and their Applications. New York: Academic Press.
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.
Burillo, P. and Burillo, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy sets and systems, 78(3), 305-316.
Chen, L. H. and Tu, C. C. (2014). Dual Bipolar Measure of Atanassov's Intuitionistic Fuzzy Sets. IEEE Transactions on Fuzzy Systems, 22(4), 966-982.
Chen, S. M. and Tan, J. M. (1994). Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy sets and systems, 67(2), 163-172.
Fan, Z. P., Ma, J., Jiang, Y. P., Sun, Y. H. and Ma, L. (2013). A goal programming approach to group decision making based on multiplicative preference relations and fuzzy preference relations. European Journal of Operational Research, 174, 311–321.
Hong, D. H. and Choi, C. H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy sets and systems, 114(1), 103-113
Jiang, Y., Xu, Z. and Gao, M. (2015). Methods for ranking intuitionistic multiplicative numbers by distance measures in decision making. Computers and Industrial Engineering, 88, 100-109.
Jiang, Y. and Xu, Z. S. (2014). Aggregating information and ranking alternatives in decision making with intuitionistic multiplicative preference relations. Applied Soft Computing, 22, 162-177.
Orlovsky, S. A. (1978). Decision-making with a fuzzy preference relation. Fuzzy sets and systems, 1(3), 155–167.
Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.
Sengupta, A. and Pal, T. K. (2000). On comparing interval numbers. European Journal of Operational Research, 127(1), 28–43.
Szmidt, E. and Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy sets and systems, 114(3), 505-518.
Szmidt, E. and Kacprzyk, J. (2000). Amount of information and its reliability in the ranking of Atanassov's intuitionistic fuzzy alternatives. Recent advances in decision making, 22, 7-19
Xia, M. M. and Xu, Z. S. (2013). Group decision making based on intuitionistic multiplicative aggregation operators. Applied Mathematical Modelling, 37, 5120–5133.
Xia, M. M., Xu, Z. S. and Liao, H. C. (2013). Preference relations based on intuitionistic multiplicative information. IEEE Transactions on Fuzzy Systems, 21, 113–133.
Xu, Z. S. (2007a). Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 15(6), 1179-1187.
Xu, Z. S. (2007b). Intuitionistic preference relations and their application in group decision making. Information sciences, 117(11), 2363–2379.
Xu, Z. S. (2007c). Multiple-Attribute Group Decision Making With Different Formats of Preference Information on Attributes. IEEE Transactions on Systems,Man and Cybernetics-Part B: Cybernetics, 37, 1500–1511.
Xu, Z. S. (2013). Priority weight intervals derived from intuitionistic multiplicative preference. IEEE Transactions on Fuzzy Systems, 21, 642-654.
Xu, Z. S. and Yager, R. R. (2008). Dynamic intuitionistic fuzzy multi-attribute decision making. International Journal of Approximate Reasoning, 48, 246-262.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Zhao, H., Xu, Z., Liu, S. and Wang, Z. (2012). Intuitionistic fuzzy MST clustering algorithms. Computers and Industrial Engineering, 62, 1130-1140.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-01-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-01-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw