進階搜尋


下載電子全文  
系統識別號 U0026-1407201015105200
論文名稱(中文) 頻率需求對手動追蹤作業學習轉移的影響
論文名稱(英文) The effect of frequency demand on learning transfer of manual tracking
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 98
學期 2
出版年 99
研究生(中文) 陳亭汝
研究生(英文) Ting-Ru Chen
學號 t6697402
學位類別 碩士
語文別 中文
論文頁數 76頁
口試委員 指導教授-黃英修
口試委員-卓瓊鈺
口試委員-楊政峰
中文關鍵字 開鏈式迴路模式  閉鏈式迴路模式  錯誤修正策略  速度  施力追蹤正弦波作業  施力震顫 
英文關鍵字 open-loop mode  closed-loop mode  error-correction strategy  rate  sinusoidal force-tracking  force tremor 
學科別分類
中文摘要 研究目的:快速和慢速動作採用不同的動作控制模式,前者傾向開鏈式迴路模式,後者傾向閉鏈式迴路模式。由於內在控制機制的差異,快速和慢速動作在運動學特徵或動力學特徵、動作錯誤修正策略、和動作過程腦活化區域也不相同;因此,動作學習速度預期將造成學習轉移效果的差別。本研究比較快頻和慢頻正弦追蹤學習後,學習效果在正弦調頻與調幅作業的轉移效應,並藉由學習引起的生理震顫特徵改變,來瞭解學習轉移效應的潛在生理機制。

研究方法:本實驗徵召32位健康年輕人,隨機分配至快頻或慢頻追蹤學習組,兩組分別學習控制食指等長外展收縮力量,學習追蹤1.4和0.2赫茲的正弦波,每次學習24秒,共計15次學習。分別在學習前和學習後休息30分鐘後,施測3種施力追蹤正弦波作業,包括:簡單正弦波(自身學習作業)、調頻、和調幅正弦波作業,比較學習前後施測作業的動作表現,以評估快、慢頻追蹤學習和學習轉移的效應。追蹤表現以實際追蹤錯誤(主動施力成分和追蹤目標曲線訊號相減後的均方根值)表示,並使用標準化追蹤錯誤改變量、錯誤變異係數來比較兩組受試者的學習轉移量與錯誤修正的策略。其他生理參數的分析包括:第一掌骨間肌的肌電訊號、肢節震顫訊號(食指和掌骨)和施力震顫訊號的均方根值、以及施力震顫訊號與肌電訊號在8-12赫茲中樞震盪成分的互譜值等等。

研究結果:快頻、慢頻追蹤學習組在自身學習作業、調頻和調幅正弦波作業的追蹤錯誤值皆顯著降低;調頻正弦波作業特別可反應出兩組不同的學習轉移量,慢頻追蹤學習組的標準化追蹤錯誤改變量顯著大於快頻追蹤學習組。但是,在調幅正弦波作業,兩組的標準化追蹤錯誤改變量則沒有顯著差異。兩組受試者經學習後呈現出不同的錯誤修正策略,在自身學習作業,快頻學習組的錯誤變異係數顯著降低,慢頻學習組反而顯著增加;在調頻正弦波作業,快頻學習組變異係數無顯著變化,慢頻學習組則顯著增加;在調幅正弦波作業,快頻和慢頻學習組的變異係數皆顯著降低。其他參數在學習後的變化:在所有施測作業,兩組的第一掌骨間肌肌電訊號的均方根值皆無顯著變化,而兩組的肢節震顫、施力震顫訊號均方根值大致呈現下降的趨勢。在調頻正弦波作業,慢頻學習組的施力震顫與肌電訊號在8-12赫茲的互譜值呈現顯著降低,但快頻學習組則無顯著變化;在調幅正弦波作業,兩組受試者的該互譜值皆顯著降低。

結論:快頻或慢頻學習後皆能有效地轉移學習效果至調頻、調幅正弦波作業,但由於兩組受試者在自身作業學習過程中使用的錯誤修正策略差異,在調頻追蹤作業,慢頻學習較快頻學習產生更大的學習轉移效應。所有的生理訊號量測中,以施力震顫與肌電訊號在8-12赫茲的互譜值最能夠反應慢頻學習者在調頻追蹤作業的學習轉移優勢,推測因速度不同的學習轉移差異與中樞神經系統產生生理震顫的迴路以及該迴路下傳控制肌肉的共同指令調整有關。
英文摘要 Objective: Fast and slow movements employ different control regimes. The former favors the open-loop mode, while the closed-loop mode is prevalent to the latter. Because of the discrepancy of the control strategies, kinematic or kinetic properties, error-correction strategy, and brain activation regions differ between the motor process of slow and fast movements. It is hypothetically assumed that subsequent learning transfer varies with rate in the practice sessions. The purpose of this study was to compare the transfer effect to tracking tasks in the frequency modulation (FM) and amplitude modulation (AM) conditions, following intensive practices of sinusoidal tracking at fast and slow target frequencies. The potential neural mechanisms underlying the frequency-dependent learning transfer were discussed based on corresponding changes in physiological tremor characteristics.

Methods: Thirty-two healthy subjects, who were randomly assigned to the fast or slow group, participated in this study. The subjects in the fast and slow groups practiced a total of 15 trials of 1.4 Hz and 0.2 Hz sinusoidal force-tracking, respectively. Each practicing trial consisted of 24 seconds. Three tracking paradigms were conducted before and 30 min after the practice sessions (i.e., pre-test and re-test), including simple task (the learning task itself), FM task, and AM task. Tracking error was characterized with root mean square (RMS) of the mismatch between the force profile and target signal. The simple learning and associated transfer effect after fast and slow practices were analyzed with change in tracking error for all testing paradigms from the re-test to pre-test. The amount of learning transfer in the FM and AM testing paradigms after fast and slow practices was assessed with standardized change in tracking error, defined as the difference in tracking error between the re-test and pre-test divided by that of the pre-test. Coefficient of variance of tracking error (CVE) was used to characterize underlying error-correction strategy for each tracking paradigm. Other physiological measures included the RMS of the electromyographic (EMG) activities of first dorsal interosseous (FDI), the limb tremors (from index finger and the 2nd metacarpal bone), force tremor, and 8-12 Hz coherence peak between force tremor and EMG (CohFT-EMG).

Results: For both the fast and slow groups, tracking errors for all the simple task, FM task, and AM task significantly decreased after practices. In the FM task, the slow group exhibited a greater standardized change in tracking errors than the fast group, in support of differential transfer effect between the two groups. On the other hand, the standardized change in tracking errors in the AM task was not different for the two groups. The error-correction strategy varied conditionally to the target rate of practice. CVE of the simple test in the fast group decreased with practices, whereas it was conversely potentiated in the slow tracking group. CVE in the FM test for the fast group remained unchanged after practice, but it increased for the slow group; CVE in the AM test consistently reduced for both of the two groups. For all testing paradigms, the RMS of the EMG of the FDI muscle did not significantly differ, but the RMS of segment tremors and force tremor demonstrated a decreasing trend for practice effect. Both groups showed a significantly lower CohFT-EMG in the re-test than in the pre-test, except that the CohFT-EMG of the FM task was not mediated by practice of fast -tracking.

Conclusion: Both learning of tracking maneuver at fast and slow rates could be effectively transferred to the FM and AM tasks. However, owing to the discrepancy of error-correction strategy inherent with the fast and slow practices, slow-tracking practice led to a greater amount of learning transfer in the FM task than fast-tracking practice. Among all physiological measures, the CohFT-EMG was the most illustrative to advantageous learning transfer after slow-tracking practice in the FM task. We considered that the rate-dependent transfer effect might be ascribed to modulations of the oscillatory circuits in the central neural system and their descending common drive in control of muscle activities.
論文目次 中文摘要........ I
英文摘要........ III
誌謝........... VI
目錄........... VII
表目錄......... X
圖目錄......... XI

第一章 前言..............................1
第一節 研究背景與文獻回顧.................1
第二節 研究目的..........................14
第三節 研究問題與假說.....................16
第四節 研究問題的重要性...................17

第二章 研究方法...........................18
第一節 受試者............................18
第二節 實驗步驟與流程.....................19
第三節 實驗儀器與設置.....................24
第四節 資料收集...........................29
第五節 訊號處理...........................30
第六節 統計分析...........................34

第三章 研究結果............................35
第一節 追蹤作業之行為動作表現...............35
一、追蹤均方根錯誤值.....................38
二、標準化追蹤均方根錯誤改變量............41
三、追蹤錯誤之變異係數值..................42
第二節 追蹤作業之第一掌骨間肌肌電訊號表現.....45
一、肌電訊號之均方根值....................45
二、肌電訊號之中位頻率....................46
第三節 追蹤作業之肢節震顫表現.................47
一、肢節震顫訊號的均方根值.................47
第四節 追蹤作業之施力震顫表現..................50
一、施力震顫訊號之均方根值..................50
二、施力震顫訊號與肌電訊號的互譜值...........51

第四章 討論....................................56
第一節 不同學習速率的行為動作轉移效應.............56
第二節 學習相關之震顫特徵改變與轉移效果........... 62

第五章 結論.....................................65
第一節 總結....................................65
第二節 實驗限制.................................66
第三節 臨床應用與未來發展.........................68

參考文獻.........................................69
自述............................................ 76

參考文獻 1. Adams JA. Historical Review and Appraisal of Research on the Learning, Retention, and Transfer of Human Motor-Skills. Psychol Bull 101: 41-74, 1987.
2. Anguera JA, Seidler RD, and Gehring WJ. Changes in performance monitoring during sensorimotor adaptation. J Neurophysiol 102: 1868-1879, 2009.
3. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16: 645-649, 2006.
4. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, and Ugurbil K. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125: 773-788, 2002.
5. Dartnall TJ, Jaberzadeh S, Miles TS, and Nordstrom MA. Motor training decreases finger tremor and movement response time in a visuomotor tracking task. Journal of Motor Behavior 41: 55-64, 2009.
6. Desmurget M and Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends in cognitive sciences 4: 423-431, 2000.
7. Diedrichsen J, White O, Newman D, and Lally N. Use-Dependent and Error-Based Learning of Motor Behaviors. Journal of Neuroscience 30: 5159-5166, 2010.
8. Duchateau J, Semmler JG, and Enoka RM. Training adaptations in the behavior of human motor units. J Appl Physiol 101: 1766-1775, 2006.
9. Elble RJ. Central mechanisms of tremor. J Clin Neurophysiol 13: 133-144, 1996.
10. Endo H and Kawahara K. Relationship between hand stability and the 10-Hz physiological tremor during various manual tasks. Ergonomics 53: 491-501, 2010.
11. Findley LJ. Classification of Tremors. Journal of Clinical Neurophysiology 13: 122-132, 1996.
12. Freund HJ. Time control of hand movements. Prog Brain Res 64: 287-294, 1986.
13. Halaney ME and Carey JR. Tracking ability of hemiparetic and healthy subjects. Phys Ther 69: 342-348, 1989.
14. Hallett M. Overview of human tremor physiology. Movement Disord 13: 43-48, 1998.
15. Halliday DM, Conway BA, Farmer SF, and Rosenberg JR. Load-independent contributions from motor-unit synchronization to human physiological tremor. J Neurophysiol 82: 664-675, 1999.
16. Hanneton S, Berthoz A, Droulez J, and Slotine JJE. Does the brain use sliding variables for the control of movements? Biological Cybernetics 77: 381-393, 1997.
17. Huang CT, Huang CC, Young MS, and Hwang IS. Age effect on fatigue-induced limb acceleration as a consequence of high-level sustained submaximal contraction. Eur J Appl Physiol 100: 675-683, 2007.
18. Huang CT, Hwang IS, Huang CC, and Young MS. Exertion dependent alternations in force fluctuation and limb acceleration during sustained fatiguing contraction. Eur J Appl Physiol 97: 362-371, 2006.
19. Hwang IS and Wu PS. The reorganization of tremulous movements in the upper limb due to finger tracking maneuvers. Eur J Appl Physiol 98: 191-201, 2006.
20. Keen DA and Fuglevand AJ. Common input to motor neurons innervating the same and different compartments of the human extensor digitorum muscle. J Neurophysiol 91: 57-62, 2004.
21. Keogh J, Morrison S, and Barrett R. Augmented visual feedback increases finger tremor during postural pointing. Exp Brain Res 159: 467-477, 2004.
22. Krigolson OE and Holroyd CB. Evidence for hierarchical error processing in the human brain. Neuroscience 137: 13-17, 2006.
23. Krigolson OE and Holroyd CB. Predictive information and error processing: the role of medial-frontal cortex during motor control. Psychophysiology 44: 586-595, 2007.
24. Kunesch E, Binkofski F, and Freund HJ. Invariant temporal characteristics of manipulative hand movements. Exp Brain Res 78: 539-546, 1989.
25. Lee TD. Transfer appropriate processing: a framework for conceptualizing practice effects in motor learning In: Complex movement behavior: The motor action controversy edited by Meije OG and Roth K. Amsterdam: Elsevier, 1988, p. 201-215.
26. Magill RA. Motor learning and control:concepts and application. 8th ed. New York: McGraw-Hill, 2007.
27. Mah CD and Mussa-Ivaldi FA. Generalization of object manipulation skills learned without limb motion. J Neurosci 23: 4821-4825, 2003.
28. McAuley JH and Marsden CD. Physiological and pathological tremors and rhythmic central motor control. Brain 123 ( Pt 8): 1545-1567, 2000.
29. McAuley JH, Rothwell JC, and Marsden CD. Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing. Exp Brain Res 114: 525-541, 1997.
30. Miall RC, Weir DJ, and Stein JF. Visuomotor tracking with delayed visual feedback. Neuroscience 16: 511-520, 1985.
31. Morrison S and Newell KM. Postural and resting tremor in the upper limb. Clin Neurophysiol 111: 651-663, 2000.
32. Mulder T and Hulstyn W. Sensory feedback therapy and theoretical knowledge of motor control and learning. Am J Phys Med 63: 226-244, 1984.
33. Pasalar S, Roitman AV, and Ebner TJ. Effects of speeds and force fields on submovements during circular manual tracking in humans. Experimental Brain Research 163: 214-225, 2005.
34. Pew RW. Human perceptual-motor performance. Hillsdale, New Jersey: John Wiley & Sons Inc, 1974.
35. Russell DM and Sternad D. Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations? J Mot Behav 33: 329-349, 2001.
36. Schmidt RA and Lee TD. motor control and learning: a behavioral emphasis. USA: Human Kinetics, 2005.
37. Seidler RD, Noll DC, and Thiers G. Feedforward and feedback processes in motor control. NeuroImage 22: 1775-1783, 2004.
38. Selen LPJ, van Dieen JH, and Beek PJ. Impedance modulation and feedback corrections in tracking targets of variable size and frequency. Journal of Neurophysiology 96: 2750-2759, 2006.
39. Semmler JG. Motor unit synchronization and neuromuscular performance. Exerc Sport Sci Rev 30: 8-14, 2002.
40. Semmler JG and Nordstrom MA. Motor unit discharge and force tremor in skill- and strength-trained individuals. Exp Brain Res 119: 27-38, 1998.
41. Semmler JG, Sale MV, Meyer FG, and Nordstrom MA. Motor-unit coherence and its relation with synchrony are influenced by training. J Neurophysiol 92: 3320-3331, 2004.
42. Shadmehr R, Smith MA, and Krakauer JW. Error Correction, Sensory Prediction, and Adaptation in Motor Control. Annu Rev Neurosci, 2010.
43. Shea CH and Wulf G. Schema theory: a critical appraisal and reevaluation. J Mot Behav 37: 85-101, 2005.
44. Siebner HR, Limmer C, Peinemann A, Bartenstein P, Drzezga A, and Conrad B. Brain correlates of fast and slow handwriting in humans: a PET-performance correlation analysis. Eur J Neurosci 14: 726-736, 2001.
45. Slifkin AB and Newell KM. Variability and noise in continuous force production. J Mot Behav 32: 141-150, 2000.
46. Slifkin AB, Vaillancourt DE, and Newell KM. Intermittency in the control of continuous force production. J Neurophysiol 84: 1708-1718, 2000.
47. Sosnoff JJ and Newell KM. Intermittency of visual information and the frequency of rhythmical force production. J Mot Behav 37: 325-334, 2005.
48. Takanokura M and Sakamoto K. Physiological tremor of the upper limb segments. European Journal of Applied Physiology 85: 214-225, 2001.
49. Thorndike EL. Educational psychology. New York: Lemcke & Buechner, 1903.
50. Thorndike EL and Woodworth RS. The influence of improvement in one mental function upon the efficiency of other functions. (I). Psychological Review 8: 247-261, 1901.
51. Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, and Bastian AJ. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of Neurophysiology 98: 54-62, 2007.
52. Turner RS, Grafton ST, Votaw JR, Delong MR, and Hoffman JM. Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol 80: 2162-2176, 1998.
53. Vaillancourt DE and Newell KM. Amplitude changes in the 8-12, 20-25, and 40 Hz oscillations in finger tremor. Clin Neurophysiol 111: 1792-1801, 2000.
54. van Roon D, Caeyenberghs K, Swinnen SP, and Smits-Engelsman BCM. Development of feedforward control in a dynamic manual tracking task. Child Dev 79: 852-865, 2008.
55. van Schie HT, Mars RB, Coles MG, and Bekkering H. Modulation of activity in medial frontal and motor cortices during error observation. Nat Neurosci 7: 549-554, 2004.
56. Wagner MJ and Smith MA. Shared Internal Models for Feedforward and Feedback Control. Journal of Neuroscience 28: 10663-10673, 2008.
57. 胡名霞. 動作控制與動作學習 第三版. 台北: 今名圖書, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw