進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1406201516123300
論文名稱(中文) O6-甲基鳥糞嘌呤-去氧核醣核酸-甲基轉化酶與化學抗癌藥物順鉑治療效果之研究及其在鼻咽癌之臨床意義
論文名稱(英文) The study on the role of O6-methylguanine-DNA methyltransferase in therapeutic efficacy of cisplatin and its clinical significance in nasopharyngeal carcinoma
校院名稱 成功大學
系所名稱(中) 臨床藥學與藥物科技研究所
系所名稱(英) Institute of Clinical Pharmacy and Pharmaceutical sciences
學年度 103
學期 2
出版年 104
研究生(中文) 陳尚鴻
研究生(英文) Shang-Hung Chen
學號 TB8991060
學位類別 博士
語文別 英文
論文頁數 72頁
口試委員 指導教授-張俊彥
口試委員-黃溫雅
口試委員-陳海雯
口試委員-洪文俊
口試委員-林常申
中文關鍵字 鼻咽癌  順鉑  O6-甲基鳥糞嘌呤-脫氧核醣核酸-甲基轉化酶  抗藥性 
英文關鍵字 nasopharyngeal carcinoma  cisplatin  O6-methylguanine–DNA methyltransferase  drug resistance 
學科別分類
中文摘要 鼻咽癌(Nasopharyngeal carcinoma)為一發生於鼻咽腔上皮的癌症並好發於台灣。在局部晚期(locally-advanced)的病患,以順鉑(cisplatin)為基礎的同步化電療(concurrent chemoradiotherapy)是目前此類患者的標準治療方式;但五年的存活率大約只有百分之六十。如何克服鼻咽癌細胞對順鉑的抗藥性,將有助於改善鼻咽癌臨床治療之成效。順鉑為白金類的化療藥物並且廣泛使用在目前癌症病患的治療。其主要作用機轉為與脫氧核醣核酸(DNA)結合形成股內交叉鏈結(intrastrand cross-linking),股間交叉鏈結(interstrand cross-linking),或與蛋白質之間形成交叉鍊結,進而抑制癌細胞複製。O6-甲基鳥糞嘌呤-脫氧核醣核酸-甲基轉化酶 (MGMT) 的主要的功能,為轉移鳥糞嘌呤第六位置氧上之甲基至酵素自身內的胱氨酸(cysteine)殘基上,可用來防護O6-alkylguanine烷化劑的毒性。但此轉化酶是否會影響順鉑在鼻咽癌的療效、作用機轉及臨床意義,目前尚無明確的結果報告。本研究首先使用小干擾核醣核酸技術(small interfering RNA)抑制兩株人類鼻咽癌細胞,HONE-1及TW01細胞中 MGMT蛋白的表現,並進而探討MGMT在癌細胞中的表現與順鉑治療之關聯性。接著,我們會去探討MGMT的表現與癌細胞對於DNA修復能力的影響,並探討在順鉑治療的情況下,MGMT被泛素(ubiquitin)化且降解(degradation)的機制。最後,藉由分析83位接受以順鉑為基礎同步化電療的鼻咽癌患者之病理檢體,分析MGMT表現量對於此類病患預後之影響。首先,我們發現癌細胞中MGMT的表現量越高,順鉑對於癌細胞的細胞毒性就會較差,去氧核醣核酸中白金含量也隨之下降。此外藉由host reactivation assay可以發現MGMT蛋白的表現量增加,也會加強癌細胞對於順鉑產生之DNA傷害的修復能力。更重要的是,我們發現MGMT蛋白可以與順鉑造成傷害之去氧核醣核酸形成鍵結;此外,在順鉑治療之後,MGMT蛋白與泛素有結合之現象,並被蛋白酶體(proteasome)降解。而在83位鼻咽癌病人檢體的研究中,我們也發現若病人MGMT 蛋白表現量越高,其接受以順鉑為基礎之同步化電療後的無病存活期(progression-free survival)及整體存活(overall survival)期越短。多變數分析也指出MGMT蛋白之表現為這群鼻咽癌病患預後之獨立影響因子。綜合上述的研究,我們發現O6-甲基鳥糞嘌呤-脫氧核醣核酸-甲基轉化酶在順鉑於鼻咽癌的療效中扮演重要決定因子。此結果提供了調控此蛋白之表現,來改善鼻咽癌的臨床療效的理論基礎。
英文摘要 Nasopharyngeal carcinoma (NPC) is an endemic head-and neck epithelial malignancy in Taiwan. Currently, Cisplatin (CDDP)-based concurrent chemoradiotherapy (CCRT) has become the standard of care for locally-advanced NPC patients but the 5-year overall survival rate is approximately 60% in these patients. How to overcome the drug resistance of CDDP may provide opportunities to improve clinical outcomes of NPC. CDDP is an important anti-cancer drug commonly used in various human cancers, including NPC. It is generally believed that DNA adducts formation, including DNA-protein cross-links, DNA monoadducts , interstrand and intrastrand DNA cross-links, is the cytotoxic target for CDDP. O6-methylguanine–DNA methyltransferase (MGMT) is a DNA repair protein that removes alkyl adducts from the O6-position of guanine to an internal cysteine residue; it has been well-characterized to be a therapeutic determinant of O6-alkylguanine alkylating drugs. However, the underlying mechanism and clinical relevance between MGMT and CDDP remain poorly defined in NPC. In this study, we aim to find out the regulations and interactions between MGMT and CDDP in NPC cell lines, HONE-1 and TW01, using the RNA interference system. The assays for DNA repair capacity, ubiqutination and degradation of MGMT proteins following CDDP treatment were also examined. The relationship between MGMT expression and clinical survivals in 83 NPC patients receiving CDDP-based concurrent chemoradiotherapy (CCRT) was analyzed. Initially, we showed that MGMT-proficient cells were highly resistance to the cytotoxic effects of CDDP as compared to MGMT-deficient cells. Further studies showed that the formation of platinum-DNA adducts after CDDP exposure was significantly lower in MGMT-proficient cells than in MGMT-deficient cells. Host cell reactivation assay revealed that MGMT protected NPC cells from CDDP-induced DNA damage by enhancing DNA repair capacity. Importantly, we demonstrated for the first time that MGMT protein directly bound to CDDP-induced DNA damages. Subsequently, CDDP-bound MGMT protein became ubiquitinated and was degraded through ubiquitin-mediated proteasome system. We further analyzed the relationship between MGMT expression and clinical survivals in a cohort of 83 NPC patients. NPC patients who received CDDP-based concurrent chemoradiotherapy (CCRT), with high MGMT expression level, exhibited shorter progression-free survival (PFS; P=0.022) and overall survival (OS; P=0.015), than patients with low MGMT expression level. Furthermore, high MGMT expression level remained to be an independent prognostic factor for worse PFS (P=0.01, hazard ratio 2.23) and OS (P=0.018, hazard ratio 2.14). In conclusion, our findings indicate that MGMT not only plays a major role in determining the efficacy of CDDP but also is a potential therapeutic target to improve the clinical outcomes of patients with NPC.
論文目次 Abstract in Chinese: I
Abstract: III
Acknowledgment: V
Abbreviations: VI
List of the content: VIII
List of tables: XI
List of figures: XII
Chapter One: Introduction: 1
1.1 Introduction of nasopharyngeal carcinoma (NPC): 2
1.2 General treatment and the therapeutic effect of cisplatin (CDDP) in NPC: 2
1.3 The cytotoxic mechanism of CDDP action: 3
1.4 The underlying mechanisms of drug resistance to CDDP: 4
1.5 The DNA repair function of O6-methylguanine–DNA methyltransferase (MGMT): 5
1.6 The correlation MGMT and resistance to O6- alkylguanine alkylating agents: 5
1.7 The prognostic role of MGMT in human cancers: 6
1.8 The correlation between MGMT and CDDP: 7
1.9 The specific aims of this study: 7
Chapter Two: Materials and Methods: 9
2.1 General approaches of each aim in this study: 10
2.2 Materials: 11
2.3 Cell culture: 11
2.4 Silencing of MGMT using siRNA transfection: 12
2.5 Western blot analysis: 12
2.6 Growth inhibition assay: 13
2.7 Cell apoptosis analysis by flow cytometry: 13
2.8 Platinum-DNA adduct measurement by enzyme-linked immunosorbent assay: 13
2.9 Host cell reactivation assay: 14
2.10 DNA affinity precipitation assay: 14
2.11 Immunoprecipitation assay: 15
2.12 Platinum–DNA and platinum-MGMT protein adduct assay by mass spectrometer: 16
2.13 In Vitro ubiquitination assay: 16
2.14 Patients and tumor specimens: 17
2.15 Immunohistochemical staining: 17
2.16 Methylation status of the MGMT CpG island: 18
2.17 Statistical analysis: 18
Chapter Three: Results: 19
3.1 MGMT expression modulates cellular sensitivity to CDDP: 20
3.2 MGMT increases DNA-repair capacity of CDDP-damaged oligonucleotides: 21
3.3 CDDP accelerates MGMT degradation via the ubiquitin-dependent proteasomal pathway: 23
3.4 Expression level of MGMT predicts the survival of NPC patients treated with CDDP-based CCRT: 25
3.5 Expression of MGMT inversely correlates with its methylation status: 25
3.6 Figures and tables: 27
Chapter Four: General Discussion and Future Works: 52
4.1 The initiation and significance of this study: 53
4.2 The potential role of MGMT to modulate CDDP cytotoxicity through the repair to CDDP damaged DNA: 54
4.3 The potential mechanism of MGMT to repair CDDP damaged DNA: 55
4.4 The potential mechanism of the synergistic interaction between CDDP and O6-alkylguanine alkylating agents: 56
4.5 The prognostic role of MGMT expression in NPC: 57
4.6 The methylation status of MGMT promoter in NPC: 57
4.7 Conclusion: 58
4.8 Future works: 59
References: 61
Appendices: 67
參考文獻 1. Al-Sarraf M, LeBlanc M, Giri PG, et al [1998]. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: Phase III randomized intergroup study 0099. J Clin Oncol, 16:1310-7.
2. Belanich M, Pastor M, Randall T, et al [1996]. Retrospective study of the correlation between the DNA repair protein alkyltransferase and survival of brain tumor patients treated with carmustine. Cancer Res, 56:783–788.
3. Blanchard P, Lee A, Marguet S, et al [2015]. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol, Published Online: 06 May 2015.
4. Byun SS, Kim SW, Choi H, et al [2005]. Augmentation of cisplatin sensitivity in cisplatin-resistant human bladder cancer cells by modulating glutathione concentrations and glutathione-related enzyme activities. BJU Int, 95:1086-90.
5. Chan AT, Teo PM, Ngan RK, et al [2002]. Concurrent chemotherapy-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: progression-free survival analysis of a phase III randomized trial. J Clin Oncol, 20:2038-44.
6. D'Atri S, Graziani G, Lacal PM, et al [2000]. Attenuation of O6-methylguanine-DNA methyltransferase activity and mRNA levels by cisplatin and temozolomide in jurkat cells. J Pharmacol Exp Ther, 294:664-71.
7. Durand, RE [1990]. Cisplatin and CCNU synergism in spheroid cell subpopulations. Br J Cancer, 62: 947-953.
8. Eastman, A [1990]. Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells, 2:275–280.
9. Egyhazi S, Margison GP, Hansson J, et al [1997]. Immunohistochemical examination of the expression of O6-methylguanine-DNA methyltransferase in human melanoma metastases. Eur J Cancer, 33:129–134.
10. Esteller M, Herman JG [2004]. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene, 8;23(1):1-8.
11. Fishel ML, Delaney SM, Friesen LD, et al [2003]. Enhancement of platinum-induced cytotoxicity by O6-benzylguanine. Mol Cancer Ther, 2:633-40.
12. Fritz G, Tano K, Mitra S, et al [1991]. Inducibility of the DNA repair gene encoding O6-methylguanine-DNA methyltransferase in mammalian cells by DNA-damaging treatments. Mol Cell Biol, 11:4660–4668
13. Gerson SL [2004]. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer, 4:296-307.
14. Glaser R, Zhang HY, Yao KT, [1989]. Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proc Natl Acad Sci USA, 86:9524-8.
15. Heffeter P, Jungwirth U, Jakupec M, et al [2008]. Resistance against novel anticancer metal compounds: differences and similarities. Drug Resist Updat, 11:1-16.
16. Hsu MM, Tu SM [1983]. Nasopharyngeal carcinoma in Taiwan. 14. Clinical manifestations and results of therapy. Cancer, 52:362.
17. Jin Y, Cai XY, Shi YX, et al [2012]. Comparison of five cisplatin-based regimens frequently used as the first-line protocols in metastatic nasopharyngeal carcinoma. J Cancer Res Clin Oncol, 138:1717-25.
18. Kaina B, Margison G, Christmann M [2010]. Targeting O6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci, 67:3663-81.
19. Koul S, McKiernan JM, Narayan G, et al [2004]. Role of promoter hypermethylation in cisplatin treatment response of male germ cell tumors. Mol Cancer, 3:16.
20. Kuo CC, Liu JF, Chang JY [2006]. DNA Repair Enzyme, DNA repair enzyme, O6-methylguanine DNA methyltransferase, modulates cytotoxicity of camptothecin-derived topoisomerase I inhibitors. J Pharmacol Exp Ther, 316:946-54.
21. Kuo CC, Liu JF, Shiah HS, et al [2007]. Tamoxifen accelerates proteasomal degradation of O6-methylguanine DNA methyltransferase in human cancer cells. Int J Cancer, 121:2293-300.
22. Lin CT, Wong CI, Chan WY, et al [1990]. Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest, 62:713-24.
23. Lin J, Kadlubar FF, Spitz MR, et al [2005]. A modified host cell reactivation assay to measure DNA repair capacity for removing 4-aminobiphenyl adducts: a pilot study of bladder cancer. Cancer Epidemiol Biomarkers Prev, 14:1832-6.
24. Lu H, Peng L, Yuan X, et al [2009]. Concurrent chemoradiotherapy in locally advanced nasopharyngeal carcinoma: a treatment paradigm also applicable to patients in Southeast Asia. Cancer Treat Rev, 35:345-53.
25. Maki Y, Murakami J, Asaumi J, et al [2005]. Role of O6-methylguanine–DNA methyltransferase and effect of O6-benzylguanine on the anti-tumor activity of cis-diaminedichloroplatinum(II) in oral cancer cell lines. Oral Oncol, 41:984-93.
26. McClay EF, McClay ME [1994]. Tamoxifen: is it useful in the treatment of patients with metastatic melanoma? J Clin Oncol, 12:617-26.
27. Miyazaki M, Nishihara H, Terasaka S, et al [2014]. Immunohistochemical evaluation of O6 -methylguanine DNA methyltransferase (MGMT) expression in 117 cases of glioblastoma. Neuropathology, 34:268-76.
28. Morita R, Nakagawa N, Kuramitsu S et al [2008]. An O6-methylguanine-DNA methyltransferase-like protein from Thermus thermophilus interacts with a nucleotide excision repair protein. J Biochem, 144:267-77.
29. Mulholland S, Pearson DM, Hamoudi RA, et al [2012]. MGMT CpG island is invariably methylated in adult astrocytic and oligodendroglial tumors with IDH1 or IDH2 mutations. Int J Cancer, 131:1104-13.
30. Nakane H, Takeuchi S, Yuba S, et al [1995]. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature, 377:165-8.
31. Nishimura T, Newkirk K, Session RB, et al [1996]. Immunohistochemical staining for glutathione S-transferase predicts response to platinum-based chemotherapy in head and neck cancer. Clin Cancer Res, 2:1859–65.
32. Piccioni D, D'Atri S, Papa G, et al [1995]. Cisplatin increases sensitivity of human leukemic blasts to triazene compounds. J Chemother, 7:224-9.
33. Preuss I, Thust R, Kaina B [1996]. Protective effect of O6-methylguanine-DNA methyltransferase (MGMT) on the cytotoxic and recombinogenic activity of different antineoplastic drugs. Int J Cancer, 65:506-12.
34. Rabik CA, Dolan ME [2007]. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev, 33:9-23.
35. Rosenberg B, VanCamp L, Trosko JE, et al [1969]. Platinum compounds: a new class of potent antitumour agents. Nature, 222:385-6.
36. Sato, K, Kitajima, Y, Nakagawachi, T, et al [2005]. Cisplatin represses transcriptional activity from the minimal promoter of the O6-methylguanine methyltransferase gene and increases sensitivity of human gallbladder cancer cells to 1-(4-amino-2-methyl-5-pyrimidinyl) methyl-3-2-chloroethyl)-3-nitrosourea. Oncol Rep, 13: 899-906.
37. Seo YR, Kelley MR, Smith ML [2002]. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci U S A, 99:14548-53.
38. Shiraishi A, Sakumi K, Sekiguchi M [2000]. Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase. Carcinogenesis, 21:1879-83.
39. Srivenugopal KS, Yuan XH, Friedman HS, et al [1996]. Ubiquitination-dependent proteolysis of O6-methylguanine-DNA methyltransferase in human and murine tumor cells following inactivation with O6-benzylguanine or 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochemistry, 35:1328–1334.
40. Srivenugopal KS, Mullapudi SR, Shou J, et al [2000]. Protein phosphorylation is a regulatory mechanism for O6-alkylguanine-DNA alkyltransferase in human brain tumor cells. Cancer Res, 60:282–287.
41. Stojic L, Brun R, Jiricny J [2004]. Mismatch repair and DNA damage signalling. DNA Repair (Amst), 3:1091–101.
42. Wang, LG, Setlow, RB [1989]. Inactivation of O6-alkylguanine-DNA alkyltransferase in HeLa cells by cisplatin. Carcinogenesis,10: 1681-1684.
43. Watts GS, Pieper RO, Costello JF, [1997]. Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol Cell Biol, 17:5612-9.
44. Wee J, Tan EH, Tai BC, et al [2005]. Randomized trial of radiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in patients with American Joint Committee on Cancer/International Union against cancer stage III and IV nasopharyngeal cancer of the endemic variety. J Clin Oncol, 23:6730-8.
45. Weller M, Stupp R, Reifenberger G, et al [2010]. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol, 6:39–51.
46. Xie H, Tubbs R, Yang B [2015]. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing. Int J Clin Exp Pathol, 8:636-42.
47. Xu FH, Xiong D, Xu YF, et al [2012]. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein-Barr virus activation. J Natl Cancer Inst, 104:1396-410.
48. Zwelling LA, Anderson T, Kohn KW [1979]. DNA-protein and DNA interstrand cross-linking by cis- and trans- platinum(II) diamminedichloride in L1210 mouse leukemia cells and relation to cytotoxicity. Cancer Res, 39:365-9. 49. Zorbas H, Keppler BK [2005]. Cisplatin damage: are DNA repair proteins saviors or traitors to the cell? Chembiochem, 6:1157–66.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw