進階搜尋


下載電子全文  
系統識別號 U0026-1405202015320000
論文名稱(中文) 利用脈衝功率系統推動錐形導線陣列產生的電漿噴流之開發
論文名稱(英文) Generation of plasma jets using a conical-wire array driven by a pulsed-power system
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 108
學期 2
出版年 109
研究生(中文) 謝知叡
研究生(英文) Chih-Jui Hsieh
電子信箱 zas692@gmail.com
學號 LA6074033
學位類別 碩士
語文別 英文
論文頁數 108頁
口試委員 指導教授-張博宇
口試委員-曲宏宇
口試委員-陳孝輝
中文關鍵字 超音速電漿噴流  脈衝功率系統  火星弓形震波  錐形導線陣列 
英文關鍵字 supersonic plasma jet  pulsed-power system  Martian bow shock  conical wire array 
學科別分類
中文摘要 本論文的目標為在真空腔中製造超音速電漿噴流來模擬太陽風,其方法為使用700MW脈衝功率系統,推動錐形導線陣列產生超音速電漿噴流。當超音速電漿噴流流過障礙物時會形成弓形震波,未來會用此方法在實驗室中模擬太陽風流過火星周圍時產生弓形震波的現象。儘管在實驗室中電漿噴流的大小與實際上的太陽風相去甚遠,但定義為 v*sqrt(ρ/p) 的尤拉數是相仿時,兩流體力學系統是相似的,因此調整適當的實驗參數使其可以在實驗環境中模擬太空的現象。此實驗將會在我們建置的脈衝功率系統上執行,該系統使用了20顆高電壓電容器,總電容值為5 µF,當充電到20 kV時,系統儲存了1 kJ的能量。為了量測系統的電流,我們製作了一條帶有積分器的Rogowski線圈。在建立系統過程中,我們執行了一系列的放電測試,其目的為:測試軌道間隙開關的耐壓、用拾波線圈取得時間基準點,這是用來同步觸發未來會使用的量測儀器、測試打磨後軌道間隙開關的效能以及系統的放電特性。當系統放電時,可產生的電流峰值為110±20 kA,上升時間為1.5±0.1 µs的脈衝電流,相對應的系統感值為150 ± 50 nH。論文最後會使用此脈衝電流來推動錐形導線陣列,在導線陣列中產生電漿噴流,因此我們也建立了一個簡化模型來計算未來所需要的導線的直徑。在未來會以一個X光針孔相機拍攝,此相機的零件已製作完成,下一階段會將此相機組裝完成。因此,在此論文最後是利用一般的相機拍攝噴流在可見光範圍的影像。
英文摘要 Supersonic plasma jets generated by driving a conical-wire array using an 700 MW pulsed-power system is used to simulate solar winds. A bow shock around an obstacle is formed when the supersonic plasma jet flows around it. It will be used to simulate the Martian bow shock in the laboratory in the future. Even the size of the plasma jet generated in the laboratory is very different from the actual solar wind, the Euler number defined as v*sqrt(ρ/p) is similar between each other showing the hydrodynamic similarity between two systems. Experiments will be conducted on the pulsed-power system we built. The system uses 20 high voltage capacitors with the total capacitance of 5 µF. The whole system is charged to 20 kV storing 1 kJ of energy. A homemade Rogowski coil with the integrator was made for measuring the discharging current. When building the system, varies of discharging experiments were conducted. The purposes were to test the breakdown voltage of the rail-gap switches, to determine the time reference point for synchronizing diagnostics in the future using a pickup coil, to test the discharge performance of the rail-gap switches after polishing, and to characterize the discharge performance. Finally, when the system was discharged, a peak current of 110±20 kA with a rise time of 1.5±0.1 µs was generated. The corresponding system inductance was 150 ± 50 nH. The conical-wire array was then driven by the pulsed current and a plasma jet at the center of the wire array was generated. The wire diameter of the conical-wire array is important and it is estimated by a simplified model. In experiments, an x-ray pinhole camera will be used to take the image of the plasma jet. The components of the x-ray pinhole camera were manufactured and the x-ray pinhole camera will be assembled in the near future. Nevertheless, images taken by a regular camera in visible light of the plasma jet is shown.
論文目次 1 Introduction ... 1
1.1 The Martian bow shock ... 1
1.2 The pulsed-power system ... 2
1.3 Diagnostics ... 2
1.4 Plasma jet generations ... 2
1.5 The goal and the outline of this thesis ... 4
2 The Martian bow shock ... 6
2.1 The formation of the Martian bow shock ... 6
2.2 Euler similarity ... 7
3 The pulsed-power system ... 10
3.1 The parallel-plate capacitor bank ... 10
3.1.1 The high-voltage DC power supply ... 10
3.1.2 The rail-gap switch ... 12
3.2 The multi-step triggering system ... 16
3.3 Discharging tests of the pulsed-power system ... 20
3.3.1 Rail-gap switch breakdown voltage tests ... 22
3.3.2 Determination of the time reference point ... 24
3.3.3 Effects of polishing electrodes of the rail-gap switch ... 28
3.3.4 Single wing discharging tests ... 31
3.3.5 Discharging test of combining two wings ... 33
3.3.6 Discharging tests of the whole system ... 36
4 Diagnostics ... 38
4.1 The Rogowski coil ... 38
4.1.1 Concept of the Rogowski coil ... 38
4.1.2 Dependency of the current location ... 39
4.1.3 Determination of parameter ... 42
4.1.4 Building procedures ... 43
4.1.5 Calibration using a function generator ... 45
4.1.6 RC integrator ... 46
4.1.7 Calibration of the Rogowski coil with and without the integrator using the pulsed-power system ... 47
4.2 Visible light camera ... 50
4.3 The x-ray pinhole camera ... 51
4.3.1 Imaging system and the micro-channel plate (MCP) ... 52
4.3.2 The concept of the MCP driver ... 54
4.3.3 The MCP driver using IGBT ... 57
4.3.4 The MCP driver using MOSFET ... 62
4.3.5 The pinhole camera controller ... 64
5 Plasma jet generations ... 69
5.1 Estimation of the requirement of the wire diameter ... 70
5.2 Design of our conical-wire array ... 74
5.3 Implosion of conical-wire arrays ... 75
6 Future work ... 78
7 Summary ... 80
References ... 82
A Appendix ... 85
A.1 The breakdown voltage ... 85
A.2 The data of discharge tests ... 86
A.3 The component drawings of the conical-wire array ... 93
A.4 The Rogowski coil ... 97
A.5 The pinhole camera controller and the MCP driver ... 99
A.6 The venders of all components ... 106
A.6.1 Locations of the experimental data in the lab drive ... 107
參考文獻 [1] SV Lebedev, JP Chittenden, FN Beg, SN Bland, A Ciardi, D Ampleford, S Hughes, MG Haines, A Frank, EG Blackman, et al. Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets. The Astrophysical Journal, 564(1):113, 2002.
[2] John R Spreiter, Audrey L Summers, and Arthur W Rizzi. Solar wind flow past nonmag1324 netic planets—venus and mars. Planetary and Space Science, 18(9):1281–1299, 1970.
[3] Christopher T. Russell Margaret G. Kivelson, editor. Introduction to space physics. Cam1326 bridge university press, 1995.
[4] Ming-Cheng Jheng. Development of a 400 mw pulsed-power system. Master’s thesis, National Cheng Kung University Institute of Space and Plasma Sciences, 2019.
[5] Sheng-Hua Yang. Developments of high voltage switches. Master’s thesis, National Cheng Kung University Institute of Space and Plasma Sciences, 2018.
[6] https://en.wikipedia.org/wiki/paschen%27s law.
[7] I-Lin Yeh. Theoretical study of the solar wind interacting with an unmagnetized planet in space and in laboratory. Master’s thesis, National Cheng Kung University Institute of Space and Plasma Sciences, 2019.
[8] Gregory G Howes. Laboratory space physics: Investigating the physics of space plasmas in the laboratory. Physics of Plasmas, 25(5):055501, 2018.
[9] D Ryutov, RP Drake, J Kane, E Liang, BA Remington, and WM Wood-Vasey. Similarity criteria for the laboratory simulation of supernova hydrodynamics. The Astrophysical Journal, 518(2):821, 1999.
[10] DD Ryutov, RP Drake, and BA Remington. Criteria for scaled laboratory simulations of astrophysical mhd phenomena. The Astrophysical Journal Supplement Series, 127(2):465, 2000.82
[11] Benjamin Edward Stanley Hall, Mark Lester, Beatriz S´anchez-Cano, Jonathan D Nichols,
David J Andrews, Niklas JT Edberg, Hermann J Opgenoorth, Markus Fr¨anz, M Holm1345 str¨om, Robin Ramstad, et al. Annual variations in the martian bow shock location as observed by the mars express mission. Journal of Geophysical Research: Space Physics, 121(11):11–474, 2016.
[12] JA Slavin, RE Holzer, JR Spreiter, SS Stahara, and DS Chaussee. Solar wind flow about the terrestrial planets: 2. comparison with gas dynamic theory and implications for solar planetary interactions. Journal of Geophysical Research: Space Physics, 88(A1):19–35, 1983.
[13] Mei-Feng Huang. Rust remover using small pulsed-power system. Master’s thesis, National Cheng Kung University Institute of Space and Plasma Sciences, 2017.
[14] https://www.graser.com.tw/product or capture cis.htm.
[15] ftp://ftp.grnet.gr/pub/pc/pspice/student version 9 1/pspcref.pdf.
[16] https://en.wikipedia.org/wiki/rogowski coil.
[17] https://en.wikipedia.org/wiki/inductor.
[18] JOSEPH LADISLAS WIZA. Microchannel plate detectors. NUCLEAR INSTRUMENTS AND METHODS, 162:587–601, 1979.
[19] https://baspik.com/eng/.
[20] https://pdf1.alldatasheet.com/datasheet-pdf/view/970276/rohm/sct3160kl.html.
[21] https://pdf1.alldatasheet.com/datasheet-pdf/view/837744/ixys/ixxk110n65b4h1.html.
[22] www.meanwellusa.com/productpdf.aspx?i=92#1.
[23] pdf1.alldatasheet.com/datasheet-pdf/view/509579/diodes/fod3184.html.
[24] https://pdf1.alldatasheet.com/datasheet-pdf/view/539950/ti1/sn74hc04apwr.html.
[25] https://docs.rs-online.com/b50e/0900766b813dfad9.pdf.
[26] ftp://chieh@140.116.16.6/shares/chieh/mcp%20labview/controller.vi.83
[27] M. K. Matzen D. D. Ryutov, M. S. Derzon. The physics of fast z pinches. Reviews of Modern Physics, 72(1), January 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-05-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-05-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw