進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1405201914220300
論文名稱(中文) 含鈮氮化物添加鈦元素製備單層與複合鍍層之磨潤性質、抗腐蝕性質及通入乙炔後之高速鑽削應用
論文名稱(英文) Titanium Addition of Niobium Nitride Single and Multilayer Coating on Wear Property, Corrosion Resistance and Applications on High Speed Drills after Acetylene Introduction
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 毛胤翔
研究生(英文) Yin-Hsiang Mao
學號 N16064810
學位類別 碩士
語文別 中文
論文頁數 107頁
口試委員 指導教授-蘇演良
口試委員-高文顯
口試委員-姚舜暉
口試委員-邱松茂
中文關鍵字 氮氣通量  多層鍍層  抗磨耗性質  抗腐蝕性質  高速鑽針 
英文關鍵字 magnetron sputtering  crystalline phase  binding energy  multilayers  corrosion resistance 
學科別分類
中文摘要 本研究分為三階段,第一階段透過DC直流濺鍍系統變化靶材電流製備NbNxA鍍層(x為電流安培),第二階段改以RF射頻濺鍍系統濺鍍,固定鈮(Nb)與鈦(Ti)靶材電流並藉由變化氮氣通量(x)製備NbTi-NX鍍層,接著再拆解最佳化參數,以不同頻率切換金屬靶材以製備NbN/TiNxmin多層鍍層(x為分鐘)。第三階段同樣使用RF射頻濺鍍系統濺鍍,以第二階段性質最佳鍍層通入乙炔,預期能有效降低鍍層的摩擦係數值並進行高速鑽針的工業應用測試。
第一階段結果顯示NbN2A鍍層不但能在不影響元素比例下有效提高鍍層厚度,使鍍層結晶相更為豐富,也能提升鍍層機械性質與硬度,亦能在電化學腐蝕上有更優秀的抗腐蝕性能。第二階段結果可以發現NbTi-N12鍍層在XRD結構分析中發現最為多樣的結晶相(包含不同方向的TiN與β-Nb2N),也因此導致XPS檢測時Nb-N與TiN電子伏特的偏移。NbTi-N12鍍層在硬度上有最佳的表現(26.6GPa),在與氮化矽球磨的比較下,表現出最優秀的磨耗率(2.49×10-6mm3/Nm)。在腐蝕測試方面也有最低的腐蝕電流(1.97E-06 A/cm2)與超過1V的破裂電位。研究也發現兩種NbN/TiN多層鍍層雖然因為超晶格硬化的機制有較高的硬度,然而卻沒有原本預期的優秀的附著性、機械與磨耗性質。並且,NbN/TiN多層鍍層在抗腐蝕測試中破裂電位會提早到來,導致鍍層在實驗中途便失去保護HSS底材的作用,因此也不適合作為抗腐蝕鍍層披覆。第三階段以第二階段最佳參數NbTi-N12單層通入乙炔製備NbTi-N12-CH鍍層,其結構由豐富的結晶相變成sp2較高的類鑽碳為主的結構,然而對附著性並沒有顯著的影響。NbTi-N12-CH鍍層硬度雖然降低至10.8GPa,卻富含固體潤滑劑的效果,並使NbTi-N12-CH鍍層在對抗氮化矽球與鉻鋼球時皆表現出非常優秀的磨耗性質,磨耗機制呈現非常輕微的刮損磨耗。另外,在抗腐蝕性質方面也有相當優秀的腐蝕電位(-0.19V)與腐蝕電流(1.81E-06 A/cm2)。在高速鑽針實驗上,能有效提升壽命至兩倍。
經過三階段循序漸進的實驗後可以發現NbN2A鍍層、NbTi-N12鍍層與兩種NbN/TiN多層鍍層皆有較高的奈米硬度表現(>24.9GPa)。在抗磨耗性質方面,氮化矽球較不易產生黏附,能表現真實的磨耗率,而鉻鋼球由於容易發生黏附機制,在大多數鍍層的磨痕中都可以測到鉻或鐵含量的黏附。黏附機制也導致其磨耗率較不能代表真實情況,在HSS底材對磨鉻鋼球時,甚至量測到非常低的磨耗率(0.89×10-6mm3/Nm)。NbTi-N12-CH鍍層在兩種對磨材料的磨耗下,均表現出優秀的抗磨耗性質,特別是在對抗鉻鋼球磨耗時,磨耗率低至(0.13×10-6mm3/Nm),磨耗機制皆為最輕微的刮損磨耗。在抗腐蝕性質方面,在披覆鍍層後,鍍層均能提升腐蝕電位與降低腐蝕電流。在腐蝕電位的表現上,鍍層間表現相差不大。在腐蝕電流方面,在破裂電位超過1V的鍍層比較中,以NbTi-N12-CH鍍層表現最佳(1.81E-06 A/cm2)。因此綜合以上原因,披覆NbTi-N12-CH鍍層為本實驗最佳的製備參數。
英文摘要 This study was composed of three stages. In first stage, NbNxA coatings were prepared by DC magnetron sputtering. In second stage, NbTi-NX and NbN/TiNxmin coatings were prepared using RF magnetron sputtering. In third stage, acetylene was introduced to prepare NbTi-NX-CH coating. Considering wear property and corrosion resistance, NbTi-N12-CH coating was the optimal parameter for preparation in this research. Applied the NbTi-N12-CH coating to a high-speed drill and tested it by drilling 2000, 4000, and 6000 holes. The results revealed that applying this coating to the drill could increase its drill life to 4000 holes, which is two times longer than that of an uncoated drill.
論文目次 考試合格證明 I
中文摘要 II
Extended Abstract IV
誌謝 VII
總目錄 VIII
表目錄 XI
圖目錄 XIII
第一章 緒論 1
第二章 理論探討與文獻回顧 2
2-1 非平衡磁控濺鍍特點 2
2-2 氮化鈮(NbN)鍍層基本性質 3
2-3 添加鈦元素(Ti)對氮化鈮(NbN)鍍層結構影響 4
2-4 多層鍍層(Multilayer Coating)基本性質 4
2-4-1 多層金屬氮化物鍍層 4
2-4-2 TiN/NbN多層鍍層 5
2-5 添加碳氫元素於含鈮氮化物鍍層之磨潤性質影響 6
第三章 實驗方法與步驟 7
3-1 實驗目的 7
3-2 實驗流程 7
3-3 鍍膜製備 8
3-3-1 濺鍍系統與靶材設置 8
3-3-2 各階段鍍層濺鍍參數 9
3-4 實驗方法 10
3-4-1 附著性試驗 10
3-4-2 薄膜結構與成分分析 10
3-4-3 表面粗糙度分析 12
3-4-4 硬度試驗 12
3-4-5 磨耗實驗 13
3-4-6 電化學腐蝕實驗 14
3-4-7 PCB高速鑽針鑽削實驗 15
3-5 實驗設備 15
第四章 實驗結果與討論 17
4-1 第一階段:固定氮氣流量下變化鈮靶電流製備NbN鍍層 17
4-1-1 附著性分析 17
4-1-2 成分與結構分析 17
4-1-3 鍍層斷面與表面形貌 19
4-1-4 機械與磨耗性質 19
4-1-4-1 赫茲應力與硬度 19
4-1-4-2 不同對磨材之磨潤性質 20
4-1-5 磨耗機制 21
4-1-5-1 氮化矽球對NbN鍍層之磨耗機制 21
4-1-5-2 鉻鋼球對NbN鍍層之磨耗機制 22
4-1-6 抗腐蝕性質 24
4-1-7 第一階段結論 24
4-2 第二階段:變化氮氣流量製備NbTi-NX單層與NbN/TiN多層鍍層 26
4-2-1 附著性分析 26
4-2-2 成分與結構分析 27
4-2-3 鍍層斷面與表面形貌 31
4-2-4 機械與磨耗性質 31
4-2-4-1 赫茲應力與硬度 31
4-2-4-2 不同對磨材之磨潤性質 32
4-2-5 磨耗機制 34
4-2-5-1 氮化矽球對NbTi-NX單層與NbN/TiN多層鍍層之磨耗機制 34
4-2-5-2 鉻鋼球對NbTi-NX單層與NbN/TiN多層鍍層之磨耗機制 36
4-2-6 抗腐蝕性質 39
4-2-7 第二階段結論 41
4-3 第三階段:以第二階段最佳參數為基礎添加乙炔 44
4-3-1 附著性分析 44
4-3-2 成分與結構分析 44
4-3-3 鍍層斷面與表面形貌 46
4-3-4 機械與磨耗性質 46
4-3-4-1赫茲應力與硬度 46
4-3-4-2 不同對磨材之磨潤性質 46
4-3-5 磨耗機制 47
4-3-5-1 氮化矽球對NbTi-N12與NbTi-N12-CH鍍層之磨耗機制 47
4-3-5-2 鉻鋼球對NbTi-N12與NbTi-N12-CH鍍層之磨耗機制 48
4-3-6 抗腐蝕性質 48
4-3-7 披覆NbTi-N12-CH鍍層於高速鑽針之切削測試 49
4-3-8 第三階段結論 51
4-4 三階段結果比較 53
第五章 結論 54
第六章 未來展望與發展 54
參考文獻 55
參考文獻 [1] Window. B, Recent advances in sputter deposition. Surf. Coat. Technol. Vol. 71, p. 93-97 (1995).
[2] 楊雲凱, 物理氣相(PVD)沉積介紹, Nano Commun. Netw. Vol. 22, p. 33-35 (2015).
[3] N. A., ASM Handbook, ASM International Handbook Committee, USA, Vol. 3, p. 2748-2749 (1990).
[4] H. Akaike, K. Yoshizawa, R. Oke, A. Fujimaki and H. Hayakawa, Overdamped NbN Junctions with NbNx Barriers Formed by Plasma Nitridation, Appl. Supercond. Vol. 5, p. 319-325 (1998).
[5] E. V. Shalaeva, R. S. Baryshev, M. V. Kuznetsov and B. V. Mitrofanov, Structure of epitaxial δ-NbN films deposited by cathode reactive sputtering, Thin Solid Films Vol. 261, p. 64-69 (1995).
[6] J. Hao, F. Jiao, D. Xie and K. Zhao, Improvements of performance on sputter-coated niobium films for superconducting cavities by adding a NbN interlayer, Physica C Vol. 450, p. 101-104 (2006).
[7] M. Radparvar, Superconducting niobium and niobium nitride processes for medium-scale integration applications, Cryogenics Vol. 35, p. 535-540 (1995).
[8] Y. Ufuktepe, A. H. Farha, S. I. Kimura, T. Hajiri, K. Imura, M. A. Mamun, F. Karadag, A. A. Elmustafa and H. E. Elsayed-Ali, Superconducting niobium nitride thin films by reactive pulsed laser deposition, The Solid Films Vol. 545, p. 603-607 (2013).
[9] K. Vasu, M. G. Krishna and K. A. Padmanabhan, Effect of Nb concentration on the structure, mechanical optical, and electrical properties of nano-crystalline Ti1-xNbxN thin films, Mater. Sci. Vol. 47, p. 3522-3528 (2012)
[10] N. N. Iosad, B. D. Jackson, F. Ferro, J. R. Gao, S. N. Polyakov, P. N. Dmitriev and T. M. Klapwijk, Source optimization for magnetron sputter-deposition of NbTiN tuning elements for SIS THz detectors, Supercond. Sci. Technol. Vol. 12, p. 736-740 (1999).
[11] N. Cansever, M. Danışman and K. Kazmanlı, The effect of nitrogen pressure on cathodic arc deposited NbN thin films, Surf. Coat. Technol. Vol. 202, p. 5919-5923 (2008).
[12] M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines and F. Levy, Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films, Surf. Coat. Technol. Vol. 180-181, p. 178-183 (2004).
[13] M. Wen, C. Q. Hu, Q. N. Meng, Z. D. Zhao, T. An, Y. D. Su, W. X. Yu and W. T. Zheng, Effects of nitrogen flow rate on the preferred orientation and phase transition for niobium nitride films grown by direct current reactive magnetron sputtering, J. Phys. D: Appl. Phys. Vol. 42(035304), p. 1-8 (2009).
[14] M. Fenker, M. Balzer, R. V. Buchi, H. A. Jehn, H. Kappl and J. -J. Lee, Deposition of NbN thin films onto high-speed steel using reactive magnetron sputtering for corrosion protective applications, Surf. Coat. Technol. Vol. 163-164, p. 169-175 (2003).
[15] V. N. Zhitomirsky, I. Grimberg, L. Rapoport, N. A. Travitzky, R. L. Boxman, S. Goldsmith, A. Raihel, I. Lapsker and B. Z. Weiss, Structure and mechanical properties of vacuum arc-deposited NbN coatings, Thin Solid Films Vol. 326, p. 134-142 (1998).
[16] S. K. Kim, B. C. Cha and J. S. Yoo, Deposition of NbN thin films by DC magnetron sputtering process, Surf. Coat. Technol. Vol. 177-178, p. 434-440 (2004).
[17] I. L. Singer, R. N. Bolster, S. A. Wolf, E. F. Skelton and R. A. Jeffries, Abrasion resistance, microhardness and microstructures of single-phase niobium nitride films, Thin Solid Films Vol. 107, p. 207-215 (1983).
[18] G. A. Fontalvo, V. Terziyska and C. Mitterer, High-temperature tribological behaviour of sputtered NbNx thin films, Surf. Coat. Technol. Vol. 202, p. 1017-1022 (2007).
[19] K. L. Rutherford, P. W. Hatto, C. Davies and I. M. Hutchings, Abrasive wear resistance of TiN/NbN multi-layers: measurement and neural network modelling, Surf. Coat. Technol. Vol. 86-87, p. 472-479 (1996).
[20] M. Raaif, Investigating the structure and tribo-mechanical performance of PVD TiN on bearing TiN substrate constructed by rf plasma, Mater. Chem. Phys. Vol. 224, p. 117-123 (2019).
[21] M. Łępicka, M. G-Dahlke, D. Pieniak, K. Pasierbiewicz, K. Kryńska and A. Niewczas, Tribological performance of titanium nitride coatings: A comparative study on TiN-coated stainless steel and titanium alloy, Wear Vol. 422-423, p. 68-80 (2019).
[22] S. Datta, M. Das, V. K. Balla, S. Bodhak and V. K. Murugesan, Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings, Surf. Coat. Technol. Vol. 344, p. 214-222 (2018).
[23] B. Bouaouina, A. Besnard, S. E. Abaidia, A. Airoudj and F. Bensouici, Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive R.F. magnetron discharge, Surf. Coat. Technol. Vol. 333, p. 32-38 (2018).
[24] B. Biswas, Y. Purandare, A. A. Sugumaran, D. A. L. Loch, S. Creasey, I. Khan, A. P. Ehiasarian and P. E. Hovsepian, Defect growth in multilayer chromium nitride/niobium nitride coatings produced by combined high power impulse magnetron sputtering and unbalance magnetron sputtering technique, Thin Solid Films Vol. 636, p. 558-566 (2017).
[25] M. Larsson, P. Hollman, P. Hendequist, S. Hogmark, U. Wahlstrom and L. Hultman, Deposition and microstructure of PVD TiN-NbN multilayered coatings by combined reactive electron beam evaporation and DC sputtering, Surf. Coat. Technol. Vol. 86-87, p. 351-356 (1996).
[26] R. A. Andrievskyi, I. A. Anisimova, and V. P. Anisimov, Structure and microhardness of TiN compositional and alloyed films, Thin Solid Films Vol. 205, p. 171-175 (1991).
[27] M. Larsson, M. Bromark, P. Hendequist and S. Hogmark, Mechanical and tribological properties of multilayered PVD TiN/NbN coatings, Surf. Coat. Technol. Vol. 91, p. 43-49 (1997).
[28] Philip C. Yashar and William D. Sproul, Nanometer scale multilayered hard coatings, Vacuum. Vol. 55, p. 179-190 (1999).
[29] X. M. Xu, J. Wang and Q. Y. Zhang, Oxidation behavior of TiN/ZrN multilayers annealed in air, Thin Solid Films Vol. 516, p. 1025-1028 (2008).
[30] J. C. Caicedo, C. Amaya, L. Yate, O. Nos, M. E. Gomez and P. Prieto, Hard coating performance enhancement by using [Ti/TiN]n, [Zr/ZrN]n and [TiN/ZrN]n multilayer system, Mater. Sci. Eng., B Vol. 171, p. 56-61 (2010).
[31] T. Friesen, J. Haupt, W. Gissler, A. Barna and P. B. Barna, Ultrahard coatings from Ti-BN multilayers and by co-sputtering, Surf. Coat. Technol. Vol. 48, p. 169-174 (1991).
[32] X. Chu, M. S. Wong, W. D. Sproul and S. A. Barnett, Mechanical properties and microstructures of polycrystalline ceramic/metal superlattices: TiN/Ni and TiN/Ni0.9Cr0.1, Surf. Coat. Technol. Vol. 61, p. 251-256 (1993).
[33] U. Helmersson, S. Todorova, S. A. Barnett, J.-E. Sundgren, L. C. Markert and J. E. Greene, Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness, J. Appl. Phys. Vol. 62, p. 481-484 (1987).
[34] J. C. Caicedo, C. Amaya, L. Yate, M. E. Gómez, G. Zambrano, J. Alvarado-Rivera, J. Munoz-Saldana and P. Prieto, TiCN/TiNbCN multilayer coatings with enhanced mechanical properties, Appl. Surf. Sci. Vol. 256, p. 5898-5904 (2010).
[35] R. Hübler, A. Schröer, W. Ensinger, G. K. Wolf, W. H. Schreiner and I. J. R. Baumvol, Plasma and ion-beam-assisted deposition of multilayers for tribological and corrosion protection, Surf. Coat. Technol. Vol. 60, p. 561-565 (1993).
[36] A. Madan, P. Yashar, M. Shinn and S. A. Barnett, An X-ray diffraction study of epitaxial TiN/NbN superlattices, Thin Solid Films Vol. 302, p. 147-154 (1997).
[37] X. T. Zeng, TiN/NbN superlattice hard coatings deposited by unbalanced magnetron sputtering, Surf. Coat. Technol. Vol. 113, p. 75-79 (1999).
[38] H. C. Barshilia and K. S. Rajam, Structure and properties of reactive DC magnetron sputtered TiN/NbN hard superlattices, Surf. Coat. Technol. Vol. 183, p. 174-183 (2004).
[39] H. C. Barshilia, K.S. Rajam and D. V. S. Rao, Characterization of low temperature deposited nanolayered TiN/NbN multilayer coatings by cross-sectional transmission electron microscopy, Surf. Coat. Technol. Vol. 200, p. 4586- 4593 (2006).
[40] L. Hultman, C. Engstrom and M. Oden, Mechanical and thermal stability of TiNrNbN superlattice thin films, Surf. Coat. Technol. Vol. 133-134, p. 227-233 (2000).
[41] B. Koscielska, A. Winiarski and B. Kusz, Structure and electrical properties of nitrided NbN-TiN sol-gel derived films, J. Non-Cryst. Solids Vol. 355, p. 1342-1346 (2009).
[42] Harish C. Barshilia, M. Surya Prakash, Aithu Poojari and K. S. Rajam, Corrosion behavior of nanolayered TiN/NbN multilayer coatings prepared by reactive direct current magnetron sputtering process, Thin Solid Films Vol. 460, p. 133-142 (2004).
[43] X. T. Zenga, S. Mridha and U. Chai, Properties of unbalanced magnetron sputtered TiN/NbN multilayer coatings, J. Mater. Process. Technol. Vol. 89-90, p. 528-531 (1999).
[44] Wolfgang Tillmann, Evelina Vogli and Fabian Hoffmann, Wear-resistant and low-friction diamond-like-carbon (DLC)-layers for industrial tribological applications under humid conditions, Surf. Coat. Technol. Vol. 204, p. 1040-1045 (2009).
[45] Stephane Neuville and Allan Matthews, A perspective on the optimisation of hard carbon and related coatings for engineering applications. Thin solid films Vol. 515 p. 6619-6653 (2007).
[46] T. ARAI, H. FUJITA and M. Watanabe, Evaluation of adhesion strength of thin hard coatings. Thin solid films Vol. 154 p. 387-401 (1987).
[47] Xiaoyin Zhu, Tutorial on Hertz Contact Stress, OPTI. Vol. 521, p. 1-8 (2012).
[48] M. A. Mamun, A. H. Farha, A. O. Er, Y. Ufuktepe, D. Gu, H. E. Elsayed-Ali and A. A. Elmustafa, Nanomechanical properties of NbN films prepared by pulsed laser deposition using nanoindendation, Appl. Surf. Sci. Vol. 258, p. 4308-4313 (2012).
[49] L. R. Sheppard, H. Zhang, R. Liu, S. Macartney, T. Murphy and R. Wuhrer, Reactive sputtered TiXNbYNZ thin films. I. Basic processing relationships, Mater. Chem. Phys. Vol. 224, p. 308-313 (2019).
[50] H. Ljungcrantz, C. Engstrom, L. Hultman, M. Olsson, X. Chu, M. S. Wong and W. D. Sproul, Nanoindentation hardness, abrasive wear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer films grown by reactive magnetron sputtering, J. Vac. Sci. Technol. A Vol. 16, p. 3104-3113 (1998).
[51] H. Sjöström, L. Hultman, and J. E. Sundgren, S. V. Hainsworth, T. F. Page and G. S. A. M. Theunissen, Structural and mechanical properties of carbon nitride CNx (0.2≤x≤0.35) films, J. Vac. Sci. Technol. A Vol. 14, p. 56-62 (1996).
[52] W. H. Kao, High-speed drilling performance of coated micro-drills with Zr–C:H:Nx% coatings, Wear Vol. 267, p. 1068-1074 (2009).
[53] P. Patsalas, C. Charitidis and S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surf. Coat. Technol. Vol. 125, p. 335-340 (2000).
[54] G. Jouve, C. Severac, S. Cantacuzene, XPS study of NbN and (NbTi)N superconducting coatings, The Soild Films Vol. 287, p. 146-153 (1996).
[55] L. Del Giudice, S. Adjama, D. La Grange, O. Banakh, A. Karimi and R. Sanjinés, NbTiN thin films deposited by hybrid HiPIMS/DC magnetron co-sputtering, Surf. Coat. Technol. Vol. 295, p. 99-106 (2016).
[56] L. Mendizabal, R. Bayón, E. G-Berasategui, J. Barriga and J.J. Gonzalez, Effect of N2 flow rate on the microstructure and electrochemical behavior of TaNx films deposited by modulated pulsed power magnetron sputtering, Thin Solid Films Vol. 610, p. 1-9 (2016).
[57] Kulwant Singh, N. Krishnamurthy and A. K. Suri, Adhesion and wear studies of magnetron sputtered NbN films, Tribol. Int. Vol. 50, p. 16-25 (2012).
[58] G. A. Zhang, Z. G. Wu, M. X. Wang, X. Y. Fan, J. Wang and P. X. Yan, Structure evolution and mechanical properties enhancement of Al/AlN multilayer, Appl. Surf. Sci. Vol. 253, p. 8835-8840 (2007).
[59] H. Ju, P. Jia, J. Xu, L. Yu, Y. Geng, Y. Chen, M. Liu and T. Wei, The effects of adding aluminum on crystal structure, mechanical, oxidation resistance, friction and wear properties of nanocomposite vanadium nitride hard films by reactive magnetron sputtering, Mater. Chem. Phys.Vol. 215, p. 368-375 (2018).
[60] H. Ju, L. Yu, S. He, I. Asempah, J. Xu and Y. Hou, The enhancement of fracture toughness and tribological properties of the titanium nitride films by doping yttrium, Surf. Coat. Technol. Vol. 321, p. 57-63 (2017).
[61] M. F. Pillis, G. A. Geribola, G. Scheidt, E. G. de Araújo, M. C. L. de Oliveira and R. Al. Antunes, Corrosion of thin, magnetron sputtered Nb2O5 films, Corros. Sci. Vol 102, p. 317-325 (2016).
[62] A. C. Alves, F. Wenger, P. Ponthiaux, J. P. Celis, A. M. Pinto, L. A. Rocha and J. C. S. Fernandes, Corrosion mechanisms in titanium oxide-based films produced by anodic treatment, Electrochim. Acta Vol. 234, p. 16-27 (2017).
[63] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng., R. Vol. 37, p. 129-281 (2002).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw