進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1405201513335500
論文名稱(中文) Protein Y抑制NDPK-A增進神經母細胞瘤侵襲轉移能力
論文名稱(英文) Protein Y counteracts the enhancing ability of NDPK-A in neuroblastoma cell invasiveness
校院名稱 成功大學
系所名稱(中) 分子醫學研究所
系所名稱(英) Institute of Molecular Medicine
學年度 104
學期 1
出版年 105
研究生(中文) 楊逸善
研究生(英文) Yi-Shan Yang
學號 T16021095
學位類別 碩士
語文別 英文
論文頁數 60頁
口試委員 指導教授-張玲
口試委員-王憲威
口試委員-盧福翊
中文關鍵字 核苷二磷酸激酶A  蛋白質Y  神經母細胞瘤 
英文關鍵字 NDPK-A  Protein Y  neuroblastoma 
學科別分類
中文摘要 人類的核苷二磷酸激酶A (Nucleotide diphosphate kinase A, NDPK-A) 是第一個被發現與癌症轉移有相關的蛋白質,其由 nm23-H1 基因所編碼。核苷二磷酸激酶 A在小鼠的黑色素瘤以及人類的乳腺癌中扮演著抑制腫瘤轉移的角色。相反的,我們實驗室發現核苷二磷酸激酶 A (Nucleotide diphosphate kinase A, NDPK-A)與其基因變異核苷二磷酸激酶AS120G (NDPK-AS120G)是促進兒童神經母細胞瘤的轉移。到目前為止,核苷二磷酸激酶 A 對腫瘤轉移的機制尚不清楚。我們實驗室最進發現蛋白質Y (Protein Y)與核苷二磷酸激酶A交互作用,但無法與核苷二磷酸激酶AS120G交互作用。在本研究發現在三株神經母細胞瘤之人類細胞株中,意料發現蛋白質Y的mRNA突變產生stop codon因而表現不正常的蛋白質Y。進一步過量表現蛋白質Y在神經母細胞瘤NB69 中,同時表達核苷二磷酸激酶 A或是變異核苷二磷酸激酶AS120G 進行實驗。
Trans-well試驗中,核苷二磷酸激酶 A顯著提高細胞在二度空間的遷移能力,但蛋白質 Y大幅抑制此能力,而兩者則互相增減此能力。但是蛋白質 Y並不抑制變異核苷二磷酸激酶AS120G 遷移能力。在clonogenic試驗中,核苷二磷酸激酶A顯著提高兒童神經母細胞瘤的colony formation能力,但是蛋白質Y則降低此能力,而兩者則彼此增減此能力。當knockdown 蛋白質Y 發現部分回復侵襲轉移能力,相似現象發現在當蛋白質Y的N端被刪除後,僅缺乏N端的蛋白質Y則喪失抑制核苷二磷酸激酶A之能力。並且在斑馬魚 transplantation model 發現到,蛋白質Y不能抑制核苷二磷酸激酶AS120G神經母細胞瘤的侵襲能力。本研究在斑馬魚的發育過程中,利用whole mount in-situ hybridization 發現到nme2b.2 與蛋白質Y 似乎並不參與在斑馬魚神經分化成交感神經的過程。總結以上結果,蛋白質Y具有抑制核苷二磷酸激酶 A 所提高的侵襲轉移能力,但對於核苷二磷酸激酶AS120G 並不能有效的抑制。並且推斷三株神經母細胞瘤可能因蛋白質Y無法正常表現,因而無法抑制核苷二磷酸激酶A對腫瘤轉移的促進能力。
英文摘要 Nucleotide diphosphate kinase A (NDPK-A) is encoded by the nm23-H1/nme1 gene, and acts as a metastasis promoter in neuroblastoma. Overexpression or S120G mutation of NDPK-A found in advanced neuroblastoma increases both invasive and metastatic potential of neuroblastoma cells. However, the molecular mechanism by which NDPK-A promotes neuroblastoma metastasis remains poorly understood. Our lab has found a novel protein, termed Protein Y, that interacted with NDPK-A, but not NDPK-AS120G. In this study, non-sense mutations of the Protein Y mRNA were found in human neuroblastoma NB69, IMR32 and SH-SY5Y cell lines. In stable transducents established from NB69 cells, ectopic expression of NDPK-A or NDPK-AS120G increased cell migration by more than two folds, whereas ectopic expression of Protein Y decreased cell migration by 47% in the trans-well assay. Co-expression of Protein Y completely abolished the migration-enhancing ability of NDPK-A. In contrast, Protein Y displayed little effect on the migration-enhancing ability of NDPK-AS120G. In the clonogenic assay, Protein Y reduced the colony number by 17%, whereas NDPK-A or NDPK-AS120G increased the colony number by 20-25%. Co-expressed Protein Y almost completely abolished the colony-enhancing ability of NDPK-A, but not NDPK-AS120G. While knocking down Protein Y expression partially restored the invasiveness-enhancing ability of NDPK-A, deletion of the N-terminus abolished the ability of Protein Y to counteract the invasiveness-enhancing ability of NDPK-A and, to a lesser degree, NDPK-AS120G. In a zebrafish transplantation model, Protein Y did not seem to affect the extravasation ability of NB69 cells, nor suppress the extravasation-enhancing ability of NDPK-AS120G. By whole mount in-situ hybridization, zebrafish NDPK-A and Protein Y orthologs, namely nme2b.2 and Protein Y, did not appear to participate in the differentiation of neural crest into sympathetic neurons, relevant to neuroblastoma. In conclusion, Protein Y counteracted the ability of NDPK-A and, to a lesser degree, NDPK-AS120G in promoting the invasiveness of NB69 cells. However, such a counteracting ability of Protein Y is likely abrogated by mutation-caused truncations, as detected in its mRNA in human neuroblastoma cell lines examined.
論文目次 1 Introduction 1
1.1 Tumor metastasis 1
1.2 Neuroblastoma 1-2
1.3 NDPK-A 2
1.4 The Puf family 2-3
1.5 Protein Y 3
1.6 Zebrafish and applications 3-4
1.7 Zebrafish orthologs of human NDPK-A and Protein Y 4
2 Objectives & Specific Aims 5
3 Materials and Methods 6
3.1 Cell lines and culture 6
3.2 Generation of stable transducents that express NDPK-A and/or Protein Y variants 6-7
3.3 Knockdown of Protein Y expression in stNB-W cells 7
3.4 Immunoblotting 7-8
3.5 Reverse transcription (RT)-PCR 8-9
3.6 Genomic DNA extraction and amplification 9
3.7 The MTT assay 9
3.8 Cell proliferation rate determination 10
3.9 The clonogenic assay 10
3.10 Wound healing and trans-well assays 10-11
3.11 Zebrafish maintenance 11
3.12 Cloning and generating zebrafish Protein Y and nme2b2 probes 11-12
3.13 Whole mount in-situ hybridization (WISH) 12
3.14 Zebrafish transplantation 12-13
3.15 Immunocytochemistry 13
4 Results
4.1 N-terminus deletion of Protein Y does not affect its stability in human neuroblastoma NB69 cells 14
4.2 Altered subcellular location of Protein Y in certain human neuroblastoma cell lines 14-15
4.3 The effects of Protein Y and/or NDPK-A variants on the migration of NB69 derivatives 15-16
4.4 The effects of Protein Y and/or NDPK-A variants on the survival of NB69 derivatives 16-17
4.5 The effects of Protein Y and /or NDPK-A variants on human neuroblastoma cell proliferation 18
4.6 Mutations occur in Protein Y mRNA in human neuroblastoma cell lines 18-19
4.7 Knockdown of Protein Y expression decrease the inhibition of cell colony formation and migration ability 19-20
4.8 Effects of Protein Y on the invasiveness of human neuroblastoma NB69 cells in a zebrafish transplantation model 20
4.9 Spatial-temporal expression of zebrafish orthologs of human NDPK-A and Protein Y during early development 21
5 Discussion 22-24
6 References 25-27
7 Table 1. The doubling time of NB69 derivatives expressing NDPK-A and/or Protein Y variants 28
8 Figures
8.1 Figure 1 29-30
8.2 Figure 2 31
8.3 Figure 3 32
8.4 Figure 4 33
8.5 Figure 5 34-35
8.6 Figure 6 36
8.7 Figure 7 37
8.8 Figure 8 38-39
8.9 Figure 9 40
8.10 Figure 10 41-42
8.11 Figure 11 43-44
8.12 Figure 12 45-47
9 Appendixes
9.1 Appendix 1. List of antibodies used in this study 48
9.2 Appendix 2. List of buffers for whole mount in-situ hybridization 48
9.3 Appendix 3. PCR primers for amplifying exons 2, 3, 4, 5 and 18 in the human Protein Y gene 49
9.4 Appendix 4. Sequence alignment of RT-PCR products of Protein Y mRNA in five human cancer cell lines 50-51
9.5 Appendix 5. Alignment the total RT-PCR translation amino acid sequences of the five human cancer cell Protein Y 52-54
9.6 Appendix 6. Sequence alignment of Protein Y mRNA after cloning of RT-PCR products in four human cell lines 55-58
9.7 Appendix 7. IMR32 Protein Y mRNA 5’ region direct sequencing PCR product and two different TA clone construct sequencing found mutation 59
9.8 Appendix 8. Sequence alignment of exons 2, 3, 4 and 18 in Protein Y gene in four human cell lines 60
參考文獻 1. S. Valastyan, R. A. Weinberg, Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292 (2011).
2. C. S. Alvarado, W. B. London et al., Natural history and biology of stage A neuroblastoma: a Pediatric Oncology Group Study. Journal of pediatric hematology/oncology 22, 197-205 (2000).
3. C. A. Perez, K. K. Matthay et al., Biologic variables in the outcome of stages I and II neuroblastoma treated with surgery as primary therapy: a children's cancer group study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 18, 18-26 (2000).
4. M. A. Almgren, K. C. Henriksson et al., Nucleoside diphosphate kinase A/nm23-H1 promotes metastasis of NB69-derived human neuroblastoma. Molecular cancer research : MCR 2, 387-394 (2004).
5. C. L. Chang, X. X. Zhu et al., Nm23-H1 mutation in neuroblastoma. Nature 370, 335-336 (1994).
6. J. G. Mehus, P. Deloukas et al., NME6: a new member of the nm23/nucleoside diphosphate kinase gene family located on human chromosome 3p21.3. Human genetics 104, 454-459 (1999).
7. M. T. Hartsough, P. S. Steeg, Nm23/nucleoside diphosphate kinase in human cancers. Journal of bioenergetics and biomembranes 32, 301-308 (2000).
8. A. Leone, R. C. Seeger et al., Evidence for nm23 RNA overexpression, DNA amplification and mutation in aggressive childhood neuroblastomas. Oncogene 8, 855-865 (1993).
9. N. Hailat, D. R. Keim et al., High levels of p19/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification. The Journal of clinical investigation 88, 341-345 (1991).
10. Y. Oda, T. Naka et al., Comparison of histological changes and changes in nm23 and c-MET expression between primary and metastatic sites in osteosarcoma: a clinicopathologic and immunohistochemical study. Human pathology 31, 709-716 (2000).
11. S. Nakamori, O. Ishikawa et al., Expression of nucleoside diphosphate kinase/nm23 gene product in human pancreatic cancer: an association with lymph node metastasis and tumor invasion. Clinical & experimental metastasis 11, 151-158 (1993).
12. S. Nakamori, O. Ishikawa et al., Clinicopathological features and prognostic significance of nucleoside diphosphate kinase/nm23 gene product in human pancreatic exocrine neoplasms. International journal of pancreatology : official journal of the International Association of Pancreatology 14, 125-133 (1993).
13. R. P. Wharton, A. K. Aggarwal, mRNA regulation by Puf domain proteins. Science's STKE : signal transduction knowledge environment 2006, pe37 (2006).
14. M. Wickens, D. S. Bernstein et al., A PUF family portrait: 3'UTR regulation as a way of life. Trends in genetics : TIG 18, 150-157 (2002).
15. J. J. Chritton, M. Wickens, Translational repression by PUF proteins in vitro. Rna 16, 1217-1225 (2010).
16. T. A. Edwards, S. E. Pyle et al., Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105, 281-289 (2001).
17. X. Wang, J. McLachlan et al., Modular recognition of RNA by a human pumilio-homology domain. Cell 110, 501-512 (2002).
18. G. Lu, S. J. Dolgner et al., Understanding and engineering RNA sequence specificity of PUF proteins. Current opinion in structural biology 19, 110-115 (2009).
19. M. W. Kuo, S. H. Wang et al., A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells. PloS one 4, e4980 (2009).
20. A. G. Brickner, E. H. Warren et al., The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing. The Journal of experimental medicine 193, 195-206 (2001).
21. H. Y. Chang, C. C. Fan et al., hPuf-A/KIAA0020 modulates PARP-1 cleavage upon genotoxic stress. Cancer research 71, 1126-1134 (2011); published online EpubFeb 1 (10.1158/0008-5472.CAN-10-1831).
22. R. Dahm, R. Geisler, Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Marine biotechnology 8, 329-345 (2006).
23. M. L. Suster, H. Kikuta et al., Transgenesis in zebrafish with the tol2 transposon system. Methods in molecular biology 561, 41-63 (2009).
24. T. Desvignes, C. Fauvel et al., The NME gene family in zebrafish oogenesis and early development. Naunyn-Schmiedeberg's archives of pharmacology 384, 439-449 (2011).
25. L. M. Lee, E. A. Seftor et al., The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Developmental dynamics : an official publication of the American Association of Anatomists 233, 1560-1570 (2005).
26. M. Haldi, C. Ton et al., Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9, 139-151 (2006).
27. D. H. Jo, D. Son et al., Orthotopic transplantation of retinoblastoma cells into vitreous cavity of zebrafish for screening of anticancer drugs. Molecular cancer 12, 71 (2013).
28. X. Huang, J. P. Saint-Jeannet, Induction of the neural crest and the opportunities of life on the edge. Developmental biology 275, 1-11 (2004).
29. D. T. Brandt, C. Baarlink et al., SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of beta1-integrin. Nature cell biology 11, 557-568 (2009).
30. S. Garrett, J. J. Rosenthal, RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science 335, 848-851 (2012).
31. G. Ramaswami, R. Zhang et al., Identifying RNA editing sites using RNA sequencing data alone. Nature methods 10, 128-132 (2013).
32. E. H. Postel, NM23-NDP kinase. The international journal of biochemistry & cell biology 30, 1291-1295 (1998).
33. E. H. Postel, Multiple biochemical activities of NM23/NDP kinase in gene regulation. Journal of bioenergetics and biomembranes 35, 31-40 (2003).
34. N. Bown, Neuroblastoma tumour genetics: clinical and biological aspects. Journal of clinical pathology 54, 897-910 (2001).
35. A. Filippi, J. Mahler et al., Expression of the paralogous tyrosine hydroxylase encoding genes th1 and th2 reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain. The Journal of comparative neurology 518, 423-438 (2010).
36. T. J. Carney, K. A. Dutton et al., A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development 133, 4619-4630 (2006).
37. 許人凱。探討與腫瘤轉移相關的NDP kinase A的交互作用蛋白及其特性。成功大學/醫學院/…分子醫學研究所/碩士/33頁/102
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-02-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw