進階搜尋


 
系統識別號 U0026-1405201009542200
論文名稱(中文) 全光纖式自發Q切換摻鉺雷射
論文名稱(英文) All-fiber self Q-switched fiber laser
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 98
學期 2
出版年 99
研究生(中文) 方彥程
研究生(英文) Yen-Cheng Fang
學號 q1894138
學位類別 博士
語文別 英文
論文頁數 107頁
口試委員 口試委員-陳永富
口試委員-陳彥宏
口試委員-謝文峰
口試委員-黃勝廣
口試委員-崔祥辰
指導教授-蔡宗祐
中文關鍵字 Q切換雷射  光纖雷射 
英文關鍵字 Q-switched Laser  Fiber Laser 
學科別分類
中文摘要 本論文主要的目的為提出並驗證全光纖式自發Q切換摻鉺光纖雷射,其中使用本文提出的三個技術來強化Q開關性能:(1)在一個環型共振腔中局部強化光子強度(2)在一個駐波共振腔中利用模場不匹配技術(3)使用一個輔助雷射縮短Q開關的lifetime。藉由在環型共振腔中的強度強化區域置放一段可飽和吸收器,即可實現全光纖被動式Q切換的機制。這個設計已經以數值模擬與實驗驗證在摻鉺光纖的1550 nm輻射波長。使用7 mW的980 nm激發光源可以產生一個能量0.37 μJ與寬度218 ns的單模Q切換脈衝。此外使用模場非匹配技術及一個可飽和收大激發開關可以成功地實現一個連續Q切換雷射系統。以980 nm雷射做為激發光源可以產生連續脈衝,脈衝重覆率0.25-1 kHz可對應其脈衝能量8-6 μJ,脈衝寬度80-320 ns。峰值功率則可達近100 W。接著提出一個利用輔助雷射光源加速可飽和收體恢復速度的技術。經由使用1570 nm雷射縮短鉺的lifetime,可得到連續Q切換脈衝的能量在4-6 μJ之間,並且脈衝寬度穩定地維持在40 ns。峰值功率則可達165 w。
英文摘要 The purpose of this dissertation is to propose and demonstrate self Q-switched all-fiber erbium laser systems, using three novel techniques local intensity-enhancement in a ring resonator, mode-field mismatching in a standing-wave resonator, and lifetime-shortening with an auxiliary laser source. A saturable absorber Q-switched all-fiber ring laser is first realized. By locating a saturable-absorber fiber in the intensity-enhanced section of a ring resonator, an all-fiber laser is passively Q-switched. The design has been numerically and experimentally demonstrated using Er3+-doped fiber at the emission wavelength of 1550 nm. A single-mode Q-switched pulse with pulse energy of 0.37 μJ and pulse duration of 218 ns was achieved with 980-nm pump power near 7 mW. In addition, a self Q-switching method using mismatched mode field areas and a saturable-amplifier pump switch are successfully demonstrated for sequentially generating Q-switched pulses. This is a fully passive, all-fiber Q-switched laser system. Pumped with a continuous-wave (CW) 980-nm laser diode (LD), sequential pulses with a pulse energy of 8–6 μJ and a pulse duration of 80-320 ns, corresponding to a pulse repetition rate of 0.25-1 kHz, were obtained. A peak pulse power of near 100 W was achieved. Furthermore, a technology of increasing the recovering rate of the saturable absorber using an auxiliary laser source is demonstrated. Through the use of an auxiliary 1570-nm laser that shortened the relaxation lifetime of erbium, sequentially Q-switched pulses with pulses energies between 4 and 6 μJ and pulse widths of 40 ns were achieved. A peak power of 165 W was obtained.
論文目次 Title i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Tables vi
List of Figures vii
List of Figures vii

Chapter 1 Introduction 1
1.1 Q-switching operation 1
1.2 Transitions in Er3+ 4
1.3 Contents of chapters 6

Chapter 2 Theory of saturable absorber Q-switching 11
2.1 Rate equations of saturable absorber Q-switching 11
2.2 Definitions of the variables in the rate equations 14
2.3 Threshold criteria and mode-field-area mismatching technology 17
2.4 Output equations of saturable absorber Q-switched lasers 20
2.4.1 Initial condition, population extraction efficiency and hold-off ratio 20
2.4.2 Output pulse characteristics of SAQSed lasers 24
2.5 Consideration of the power confinement factor in fiber core 28
2.6 Lifetime consideration for sequential Q-switching using CW pump 30

Chapter 3 A saturable absorber Q-switched all-fiber ring 37
3.1 Introduction 37
3.2 Modeling and Simulation 39
3.3 Experiments and Results 44
3.4 Conclusion 47

Chapter 4 All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch 51
4.1 Introduction 51
4.2 Experiments and Results 54
4.3 Conclusion 60

Chapter 5 A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser 63
5.1 Introduction 63
5.2 Modeling and Simulation 65
5.2.1 Lifetime shortening by 1570-nm erbium laser 65
5.2.2 Modified rate equation 67
5.3 Experiments and Results 73
5.4 Conclusion 79

Chapter 6 Conclusions and future works 83
6.1 Conclusions 83
6.2 Future works 86

Appendix A 89
Appendix B 97
Vita 107
參考文獻 chapter 1
[1] Nick Taylor, “LASER: The inventor, the Nobel laureate, and the thirty-year patent war,” Simon & Schuster, New York, page (2000).
[2] F. J. McClung and R.W. Hellwarth, “Giant optical pulsations from ruby,” Journal of Applied Physics 33, 828-829 (1962).
[3] C. Frerichs, T., “Q-switched operation of laser-diode-pumped erbium-doped fluorozirconate fiber laser operating at 2.7 μm,” Electron. Lett. 30, 706-707 (1994).
[4] Y. A. Peter, H. P. Herzig, E. Rochat, R. Dandliker, C. Marxer and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Optical Engineering 38, 636-640 (1999).
[5] A. Crunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. Couderc, L. Grossard, P. H. Pioger and A. Barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system”, J. Opt. A-Pure Appl. Opt. 8, S347-S351 (2006).
[6] D. Sabourdy, D. Bouyge, A. Crunteanu, P. Blondy, V. Couderc, J. Lhermite, V. Kermene, D. Desfarges-Berthelemot, L. Grossard and A. Barthelemy, “Novel active Q-switched fiber laser based on electrostatically actuated micro-mirror system,” Opt. Express 14, 3917-3922 (2006).
[7] M. Fabert, A. Desfarges-Berthelemot, V. Kermene, A. Crunteanu, D. Bouyge and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror ,” Opt. Express 16, 22064-22071 (2008).
[8] W. Chen, K. Spariosu, R. Stultz, Y. K. Kuo, M. Birnbaum and A. V. Shestakov, “Cr4+ - GSGG saturable absorber Q-switch for the ruby-laser,” Opt. Commun. 104, 71-74 (1993).
[9] Y. K. Kuo, M. Birnbaum, F. Unlu and M. F. Huang, “Ho:CaF2 solid-state saturable-absorber Q switch for the 2-μm Tm, Cr:Y3Al5O12 laser,” Appl. Optics 35 (15), 2576-2579 (1996).
[10] R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609-619 (1997).
[11] T. Y. Tsai and M. Birnbaum, “Q-switched 2-μm lasers by use of a Cr2+:ZnSe saturable absorber,” Appl. Optics 40, 6633-6637 (2001).
[12] F. Z. Qamar and T. A. King, “Passive Q-switching of the Tm-silica fibre laser near 2 μm by a Cr2+:ZnSe saturable absorber crystal,” Opt. Commun. 248, 501-508 (2005).
[13] J. Hebling, “Q-switched picosecond dye-laser pumped by an excimer laser,” Appl. Optics 28, 417-419 (1989).
[14] J. Hebling, J. Seres, Z. Bor and B. Racz, “Dye-laser pulse shortening and stabilization by Q-switching,” Opt. Quantum Electron. 22, 375-384 (1990).
[15] T. Thevar and J. Watson, “Operational characteristics of a dye Q-switch for a pulsed ruby-laser,”Opt. Laser Technol. 24, 323-327 (1992).
[16] N. D. Hung, H. H. Hoa, L. H. Hai and P. Brechignac, “Simple generation of tunable near-infrared picosecond dye-laser pulses using spectre-temporal selection,” Applied Physics B-Lasers and Optics 69, 467-471 (1999).
[17] Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237, 411-416 (2004).
[18] G. Q. Li, S. Z. Zhao, K. J. Yang, D. C. Li and J. Zou, “Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO4/KTP green laser with AO and GaAs ,” Opt. Express 13, 1178-1187 (2005).
[19] T. Ogawa, T. Imai, K. Onodera, H. Machida, M. Higuchi, Y. Urata and S. Wada, “Efficient pulse operation of Nd:GdVO4 laser with AO Q-switch ,” Applied Physics B-Lasers and Optics 81, 521-524 (2005).
[20] D. W. Huang, W. F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12, 1153–1155 (2000).
[21] D. Zalvidea, N. A. Russo, R. Duchowicz, M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “High repetition rate acoustic-induced Q-switched all-fiber laser,” Opt. Commun. 244, 315–319 (2005).
[22] M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Pérez-Millan, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
[23] N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Commun. 210, 361–366 (2002).
[24] P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, “Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating,” Opt. Express 13, 5046–5051 (2005).
[25] R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Qswitched 0.1-mJ fiber laser system at 1.53 mum,” Opt. Lett. 24, 388–390 (1999).
[26] S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, “Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression,” Opt. Express 16, 22058–22063 (2008).
[27] V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Yb-Bi pulsed fiber lasers,” Opt. Lett. 32, 451–453 (2007).
[28] P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller, and J. Kirchhof, “Passive Q-switching by Tm3+ codoping of a Yb3+-fiber laser,” Opt. Express 11, 2730–2735 (2003).
[29] A. A. Fotiadi, A. S. Kurkov and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” 2005 Conference on Lasers and Electro-Optics Europe, p. 515.
[30] V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Yb-Bi pulsed fiber lasers,” Opt. Lett. 32, 451–453 (2007).
[31] A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” 2005 Conference on Lasers and Electro-Optics Europe, p. 515.
[32] P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller, and J. Kirchhof, “Passive Q-switching by Tm3+ codoping of a Yb3+-fiber laser,” Opt. Express 11, 2730–2735 (2003).
[33] T. Y. Tsai and Y. C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express, 17, 1429-1434 (2009).
[34] T. Y. Tsai, Y. C. Fang, Z. C. Lee and H. X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Letters, 34, pp. 2891-2893 (2009).
[35] T. Y. Tsai and Y. C. Fang, “A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser,” Opt. Express, 17, 21628-21633 (2009).
[36] R. J. Mears, L. REEkie, S. B. Poole and D. N. Payne, “Low-threshold tunable-cw and q-switched fiber laser operating at 1.55 μm,” Electron. Lett. 22, 159-160 (1986).

Chapter 2
[1] A. Siegman, “Lasers,” University Science Books, Mill Valley, California, chap. 26, (1986).
[2] M. Lukac, “Output energy characteristics of optimally pumped rotating mirror Q-switch lasers,” IEEE J. Quantum Electron., 27, 2094-2097, (1991).
[3] J.J Zayhowski and P. L. Kelley “Optimization of Q-switched laser,” IEEE J. Quantum Electron., 27, 2220-2225, (1991)
[4] J.J. Degnan, “Theory of optimally coupled Q-switched laser,” IEEE J. Quantum Electron., 25, 214-220, (1989)

Chapter 3
[1] H. H. Kee, G. P. Lees and T. P. Newson, “Narrow linewidth CW and Q-switched erbium-doped fibre loop laser,” Electron. Lett. 34, 1318-1319 (1998).
[2] J. A. Álvarez-Chávez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A: Clarckson and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37-39 (2000).
[3] R. Paschotta, R. Haring, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm,” Opt. Lett. 24, 388 (1999).
[4] M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, and W. A. Clarkson, “Compact diode-pumped passively Q-switched tunable double-clad fiber laser,” Opt. Lett. 27, 1980-1982 (2002).
[5] J. Y. Huang, H. C. Liang, K. W. Su, and Y. F. Chen, “High power passively Q-switched ytterbium fiber laser with Cr4+:YAG as a saturable absorber,” Opt. Express 15, 473-479 (2007).
[6] P. Roy, D. Pagnoux, L. Mouneu and T. Midavaine, “High efficiency 1.53-μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser,” Electron. Lett. 33, 1317-1318 (1997).
[7] D. W. Huang, W. F. Liu and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photonics Technol. Lett. 12, 1153-1155 (2000).
[8] D. Zalvidea, N.A. Russo, R. Duchowicz, M. Delgado-Pinar, A. Díez, J.L. Cruz and M.V. Andrés, “High repetition rate acoustic-induced Q-switched all-fiber laser,” Opt. Commun. 244, 315-319 (2005).
[9] M. Delgado-Pinar , D. Zalvidea, A. Díez, P. Pérez-Millán and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106 (2006).
[10] Y. Kaneda, Y. Hu, C. Spiegelberg, J. Geng and S. Jiang, “Single-frequency, all-fiber Q-switched laser at 1550 nm,” presented at OSA Topical Meeting on Advanced Solid-State Photonics, (2004).
[11] N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Commun. 210, 361-366 (2002).
[12] P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, "Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating," Opt. Express 13, 5046-5051 (2005).
[13] B. Dussardier, A. Saissy and L. Tordella, “A passively Q-switched Er3+-doped fiber laser using a Co2+- doped fiber as saturable absorber,” 2005 Conference on Lasers and Electro-Optics Europe, p. 562.
[14] L. Luo and P.L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257-263 (1999).
[15] S.G.C. Vicente, M.A.M. Gamez, A.V. Kir'yanov, Y.O. Barmenkov, M.V. Andres, "Diode-pumped self-Qswitchederbium-doped all-fibre laser," Quantum. Electron. 34, 310-314 (2004).
[16] A. A. Fotiadi, A. S. Kurkov and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” 2005 Conference on Lasers and Electro-Optics Europe, p. 515.
[17] A. Siegman, “Passive Saturable Absorber Q-switching,” in Chap. 26.3, Lasers (University Science Books, 1986), pp. 1024-1033.

Chapter 4
[1] D. W. Huang, W. F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12(9), 1153–1155 (2000).
[2] D. Zalvidea, N. A. Russo, R. Duchowicz, M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “High repetition rate acoustic-induced Q-switched all-fiber laser,” Opt. Commun. 244, 315–319 (2005).
[3] M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Pérez-Millan, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
[4] N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Commun. 210, 361–366 (2002).
[5] P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, “Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating,” Opt. Express 13, 5046–5051 (2005).
[6] R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Qswitched 0.1-mJ fiber laser system at 1.53 mum,” Opt. Lett. 24, 388–390 (1999).
[7] S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, “Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression,” Opt. Express 16, 22058–22063 (2008).
[8] V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Yb-Bi pulsed fiber lasers,” Opt. Lett. 32, 451–453 (2007).
[9] P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller, and J. Kirchhof, “Passive Q-switching by Tm3+ codoping of a Yb3+-fiber laser,” Opt. Express 11, 2730–2735 (2003).
[10] A. A. Fotiadi, A. S. Kurkov and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” 2005 Conference on Lasers and Electro-Optics Europe, p. 515.
[11] R. D. Stultz, M. B. Camargo, and M. Birnbaum, “Passive Q-switch at 1.53 μm using divalent uranium ions in calcium fluoride,” J. Appl. Phys. 78(5), 2959–2961 (1995).
[12] T.-Y. Tsai, and M. Birnbaum, “Co2+:ZnS and Co2+:ZnSe Saturable Absorber Q-switches,” J. Appl. Phys. 87, 25–29 (2000).
[13] T.-Y. Tsai, and Y.-C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17, 1429–1434 (2009).
[14] Y. Wang and C.-Q. Xu, “Understanding multipeak phenomena in actively Q-switched fiber lasers,” Opt. Lett. 29, 1060 (2004).
[15] R. Paschotta, “Complicated Pulse Shapes from Q-switched Fiber Lasers,” http://www.rp-photonics.com/spotlight_2009_03_07.html.

Chapter 5
[1] N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Commun. 210, 361–366 (2002).
[2] D. W. Huang, W. F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12, 1153–1155 (2000).
[3] D. Zalvidea, N. A. Russo, R. Duchowicz, M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “High repetition rate acoustic-induced Q-switched all-fiber laser,” Opt. Commun. 244, 315–319 (2005).
[4] M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Pérez-Millan, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
[5] P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, “Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating,” Opt. Express 13, 5046–5051 (2005).
[6] R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Qswitched 0.1-mJ fiber laser system at 1.53 mum,” Opt. Lett. 24, 388–390 (1999).
[7] S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, “Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression,” Opt. Express 16, 22058–22063 (2008).
[8] V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Yb-Bi pulsed fiber lasers,” Opt. Lett. 32, 451–453 (2007).
[9] A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” 2005 Conference on Lasers and Electro-Optics Europe, p. 515.
[10] P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller, and J. Kirchhof, “Passive Q-switching by Tm3+ codoping of a Yb3+-fiber laser,” Opt. Express 11, 2730–2735 (2003).
[11] A. S. Kurkov, E. M. Sholokhov, and O. I. Medvedkov, “All fiber Yb-Ho pulsed laser,” Laser Phys. Lett. 6, 135–138 (2009).
[12] S. D. Jackson, “Passively Q-switched Tm3+-doped silica fiber lasers,” Appl. Opt. 46, 3311–3317 (2007).
[13] R. D. Stultz, M. B. Camargo, and M. Birnbaum, “Passive Q-switch at 1.53 μm using divalent uranium ions in calcium fluoride,” J. Appl. Phys. 78, 2959–2961 (1995).
[14] T.-Y. Tsai, and M. Birnbaum, “Co2+:ZnS and Co2+:ZnSe Saturable Absorber Q-switches,” J. Appl. Phys. 87, 25–29 (2000).
[15] T.-Y. Tsai, and Y.-C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17, 1429–1434 (2009).
[16] T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett. 34, 2891–2893 (2009).

Chapter 6
[1] S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14, 1, 50-57 (2006).
[2] K. Annapurna, M. Das, S. Buddhudu, “Spectral analysis of thulium doped zinc-boro-silicate glass,” Physica B 388, 174-179 (2007).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-05-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-05-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw