進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1402201917465500
論文名稱(中文) 應用衛星測高與潮位站資料建立台灣區域平均海水面
論文名稱(英文) Establishing Taiwan regional mean sea surface using altimetry and tide gauge data
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 107
學期 1
出版年 108
研究生(中文) 張瀚文
研究生(英文) Han-Wen Chang
學號 P66051038
學位類別 碩士
語文別 中文
論文頁數 107頁
口試委員 指導教授-郭重言
口試委員-曾國欣
口試委員-蕭宇伸
中文關鍵字 平均海水面  潮位站  衛星測高  次最優插值法 
英文關鍵字 mss  tide gauge  altimetry  sub-optimal interpolation 
學科別分類
中文摘要 平均海水面模型在海陸域的基準連結中為一重要參考面,高程基準以平均海水面為海拔零點,而深度基準常以平均海水面為潮位參考零點,再藉各潮位面定義,以平均海水面計算所需潮位面高,因此在基準連結中建立平均海水面是必要的。平均海水面常藉由衛星測高與潮位站等方式先獲取海水面變化觀測量,經由改正移除影響觀測量的誤差以及去除海潮影響以獲得平均海水面。本研究欲建置一台灣周圍區域性平均海水面,使用1993-2017年的衛星測高以及台灣沿岸潮位站資料。潮位站依觀測時間長短分為長期與短期測站,其中短期測站較易受低頻訊號影響,因此需以長期測站對其進行改正,以降低誤差,並利用2001臺灣高程基準(Taiwan Vertical Datum 2001,TWVD2001)與 Global Navigation Satellite System (GNSS)觀測量建置橢球高與正高的轉換關係,獲得平均海水面橢球高;衛星測高資料經移除粗差後,將多衛星觀測值轉換至一致的參考框架,並藉由次最優插值法(sub-optimal interpolation method) 建立解析度為 的台灣區域性平均海水面模型。為增進沿岸精度,遂利用多項式移動曲面線性內插將衛星測高與潮位站資料進行整合,以獲得與外海保持連續性且於近岸具高精度的平均海水面。本島潮位站相對於TWVD2001之平均海水面的偏移量受海水溫度及鹽度的變化使越往南則偏移越大;衛星測高產製之平均海水面則與目前通用之CNES_CLS_2015及DTU 15平均海水面進行比較,其與兩者之差值方均根(Root Mean Square, RMS)為5.7及7.9公分。為增進近岸精度,本研究設計了共12種內插計算條件,而最佳內插成果之擬合平均海水面與台灣近岸潮位站平均海水面之差值RMS為5.3公分。
英文摘要 Mean sea surface (MSS) is an important reference for vertical datum to connect land and ocean. MSS represents the surface whose altitude/tidal range is zero for land and ocean applications, respectively. Therefore, establishing MSS is necessary for the vertical datum connection. Satellite altimetry and tide gauge data are commonly used to establish MSS. In the study, tide gauges are divided into long-term and short-term stations with different observation periods. Long-term stations are used to correct seasonal signals and meteorological effect for short-term stations. To convert MSS from orthometric height to the ellipsoidal height, Taiwan Vertical Datum 2001 (TWVD2001) and GNSS observations (TWD97 [2010]) are used; For Satellite altimetry, reference frame transformation is required to merge multi-satellites data. Then, sub-optimal interpolation method is applied to generate the grid format MSS around Taiwan with 2^'×2^' spatial resolution. To keep the continuity from coasts to the offshore and improve the accuracy in coastal regions, we design 12 different ways to merge the two datasets. MSS are compared with tide gauge records. For tide gauge MSS, the offset referenced to TWVD 2001 tide gauge MSS and TWVD2001 becomes larger toward the south due to the changes of sea temperature and salinity. The satellite altimetry MSS is similar to the up-to-date MSS model. The difference of root-mean-square (RMS) is about 25 cm. And for the integrate MSS result, the minimum RMS in the research is 5.3 cm.
論文目次 目錄
摘要 I
EXTENDED ABSTRACT II
致謝 XI
目錄 XIII
表目錄 XIX
第一章 緒論 1
1-1 研究動機與目的 1
1-2 論文架構 8
第二章 衛星測高與潮位站資料 9
2-1 衛星測高技術發展概況 9
2-2 衛星測高基本原理 13
2-3 衛星測高誤差分析 14
2-3-1 衛星定軌誤差 15
2-3-2 儀器誤差 16
2-3-3 傳播介質延遲誤差 16
2-3-4 地球物理改正 17
2-3-5 海洋環境誤差改正 18
2-4 測高衛星介紹 18
2-4-1 European Remote Sensing satellite 1, ERS-1 18
2-4-2 TOPEX/Poseidon 19
2-4-3 European Remote Sensing satellite 2, ERS-2 20
2-4-4 GEOdetic SATellite Follow-on 1, GFO-1 21
2-4-5 Jason-1 22
2-4-6 Environmental Satellite, ENVISAT 23
2-4-7 Jason-2 24
2-4-8 CRYOSAT-2 24
2-4-9 Satellite with ARgos and ALtiKa, SARAL 25
2-4-10 Jason-3 26
2-5 本研究使用之衛星測高資料 27
2-6 潮位站設計與測量原理 31
2-6-1 超音波式潮位儀 31
2-6-2壓力式潮位儀 32
2-6-3浮筒式潮位儀 33
2-7 台灣潮位站概況與分佈 33
第三章 資料處理與平均海水面產製方法 39
3-1 潮位站資料處理 39
3-1-1 基準偏移校正 39
3-1-2 逆氣壓效應改正 42
3-1-3 斜率移除 44
3-2 衛星測高粗差移除及參考框架偏差改正 45
3-2-1 衛星測高資料粗差移除 45
3-2-2 衛星測高參考框架偏差改正 47
3-3 次最優插值法 51
3-3-1 沿軌跡測高觀測數據的處理 52
3-3-2 計算區域尺度的處理 53
3-3-3 協方差函數(海水面變化訊號時空相關函數) 54
3-3-4 白噪聲與長波長相關誤差於觀測值間協方差之處理 55
3-4 平均海水面的產製 56
3-4-1 潮位站資料產製平均海水面 56
3-4-2 衛星測高資料產製平均海水面 60
3-4-3 平均海水面的整合 61
第四章 平均海水面產製成果分析與討論 63
4-1 潮位站之平均海水面 65
4-1-1 季節性訊號與氣象因子效應對短期潮位站資料之影響 65
4-1-2 潮位站平均海水面高與基準之分析 67
4-1-3 潮位站平均海水面的正高與橢球高轉換 70
4-2 衛星測高平均海水面高之分析 72
4-2-1 衛星測高產製之區域性平均海水面 72
4-2-2 與其他平均海水面模型之比較 73
4-2-3 衛星測高之平均海水面模型(MSS)於台灣近岸之成果分析 77
4-3 平均海水面整合成果與分析 79
4-3-1 第一次平均海水面成果分析及評估 81
4-3-2 台灣東部沿岸之平均海水面分析 87
4-3-3第二次平均海水面成果分析及評估 94
4-3-4台灣周圍區域性平均海水面模型成果 96
第五章 結論與建議 100
參考文獻 103

參考文獻 日本國土地理院,高程基準, http://www.gsi.go.jp/sokuchikijun/suijun-base.html, 2018
內政部國土測繪中心,107 年高程基準檢測工作報告書。2017
史天元,臺灣周邊海域深度基準探討,地籍測量:中華民國地籍測量學會會刊。36.4,1-14,2017。
交通部中央氣象局,潮汐觀測資料年報。2005。
青島市情網,青島市史志辦,http://qdsq.qingdao.gov.cn/n15752132/index.html, 2018
高煥欽,台灣附近波形重定之測高資料精度評估(碩士論文),國立成功大學測量及空間資訊所。2010。
郭金運, 常曉濤, 孫佳龍, &高永剛,衛星雷達測高波形重定及應用。中國:測繪出版社,2013。
黃昱倫,利用低成本 GNSS&IMU 浮標監測海洋訊號(碩士論文),國立成功大學測量及空間資訊所。2016。
Andersen, O. B., and P. Knudsen, DNSC08 mean sea surface and mean dynamictopography models, Journal of Geophysical Research: Oceans. 114, C11, 2009.
Andersen, O. B., and P. Knudsen, The DTU10 mean sea surface and mean dynamictopography–Improvements in the Arctic and coastal zone, Ocean Surface Topography Science Team Meeting, Lisbon, Portugal. 2010.
Andersen, O. B., P. Knudsen, and L. Stenseng, The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry, IGFS 2014. Springer, Cham. 111-121, 2015.
Andersen, O. B., L. Stenseng, G. Piccioni, & P. Knudsen, The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface. ESA Living Planet Symposium 2016. 2016.
Arhan, M., and A. C. De Verdiére, Dynamics of eddy motions in the eastern North Atlantic, Journal of physical oceanography, 15.2, 153-170, 1985.
AVISO, http://www.aviso.oceanobs.com/en/. 2018.
Bezoekerscentrum Normaal Amsterdams Peil te Amsterdam, https://www.normaalamsterdamspeil.nl/nl/, 2018
Bretherton, F. P., R. E. Davis, and C. B. Fandry, A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep Sea Research and Oceanographic Abstracts. Vol. 23. No. 7. Elsevier, 1976.
Dalrymple, R.A., Breaker, L.C., Brooks, B.A., Cayan, D.R., Griggs, G.B., Han, W., Horton, B.P., Hulbe, C.L., Mcwilliams, J.C., Mote, P.W., Pfeffer, W.T., Reed, D.J., Shum, C.K., Holman, R.A., Linn, A.M., Mcconnell, M., Gibbs, C.R., Ortego, J.R., Sea-level rise for the coasts of California, Oregon, and Washington: past, present, and future, National Research, Council.The National Academies Press, Washington DC. 2012.
Dee, D.P., S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, and P. Bauer, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly Journal of the royal meteorological society. 137.656, 553–597, 2011.
DTU space, https://www.space.dtu.dk/english/research/scientific_data_and_models /global_mean_sea_surface, 2013
Ducet, N., P. Y. Le Traon, and G. Reverdin, Global high ‐resolution mapping of ocean circulation from TOPEX/Poseidon and ERS‐1 and‐2, Journal of Geophysical Research: Oceans. 105. C8, 19477-19498, 2000.
eoPortal dictionary, https://directory.eoportal.org/web/eoportal/satellite-missions. 2018.
Hannah, J., The difficulties in using tide gauges to monitor long-term sea level change, Survey Quarterly. 300.65, 19, 2011.
Hernandez, F., and P. Schaeffer, The CLS01 Mean Sea Surface: A validation with the GSFC00 surface, CLS Ramonville St Agne, France, 2001.
Iliffe, J. C., M. K. Ziebart, and J. F. Turner, A new methodology for incorporating tide gauge data in sea surface topography models, Marine Geodesy. 30.4, 271-296, 2007.
Jacobs, G. A., C. N. Barron, and R. C. Rhodes, Mesoscale characteristics, Journal of Geophysical Research: Oceans. 106. C9, 19581-19595, 2001.
Jin, T. Y., J. C. Li, and W. P. Jiang, The global mean sea surface model WHU2013, Geodesy and Geodynamics. 7.3, 202-209, 2016.
Kaula, W.M., Application of Space and Astronomic Techniques, Report of a Study at Williamstown, The Terrestrial Environment: Solid Earth and Ocean Physics. 1969.
Lan, W. H., Kuo, C. Y., Kao, H. C., Lin, L. C., Shum, C. K., Tseng, K. H., & Chang, J. C., Impact of Geophysical and Datum Corrections on Absolute Sea-Level Trends from Tide Gauges around Taiwan, 1993–2015, Water. 9.7, 480, 2017.
Le Traon, P. Y., F. Nadal, and N. Ducet, An improved mapping method of multisatellite altimeter data, Journal of atmospheric and oceanic technology. 15.2, 522-534, 1998.
Le Traon, P. Y., Faugère, Y., Hernandez, F., Dorandeu, J., Mertz, F., & Ablain, M, Can we merge GEOSAT Follow-On with TOPEX/POSEIDON and ERS-2 for an improved description of the ocean circulation? , Journal of Atmospheric and Oceanic Technology. 20.6, 889-895, 2003.
Moritz, H., and I.I. Müller, Earth Rotation theory and Observation, Ungar. 1987. Oschlies, Andreas, and Jürgen Willebrand, Assimilation of Geosat altimeter data into an eddy ‐resolving primitive equation model of the North Atlantic Ocean, Journal of Geophysical Research: Oceans. 101. C6, 14175-14190, 1996.
Parker, B., Tides, Encyclopedia of Coastal Science. Springer, Dordrecht. 987-996,2005.
Pattullo, J., W. Munk, R. Revelle, and E. Strong, The seasonal oscillation in sea level, Journal of Marine Research. 14, 88–155, 1955.
Pineau-Guillou, L., and L. Dorst, Creation of vertical reference surfaces at sea using altimetry and GPS, Reference Frames for Applications in Geosciences. Springer, Berlin, Heidelberg. 229-235, 2013.
Ponte, R. M., Low-frequency sea level variability and the inverted barometer effect, Journal of Atmospheric and Oceanic Technology. 23.4, 619-629, 2006.
Rapp, R. H., Y. Yi, and Y. M. Wang, Mean sea surface and geoid gradient comparisons with TOPEX altimeter data, Journal of Geophysical Research: Oceans. 99. C12, 24657-24667, 1994.
Schaeffer, P., Y. Faugére, J. F. Legeais, A. Ollivier, T. Guinle and N. Picot, The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data, Marine Geodesy. 35. sup1, 3-19, 2012.
Schaeffer, P., Y. Faugére, J. F. Legeais, A. Ollivier, T. Guinle and N. Picot, The CNES CLS 2015 Global Mean Sea surface, Presentation OSTST. 2016.
Seeber, Günter, Satellite geodesy: foundations, methods, and applications, Walter de gruyter. 2008.
Stammer, D., Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements, Journal of Physical Oceanography. 27.8, 1743-1769, 1997.
Torge, W., and J. Müller, Geodesy, Walter de Gruyter. 2012. Wagner, C. A., How well do we know the deep ocean tides? An intercomparison of altimetric, hydrodynamic and gage data, Manuscr. Geod. 16, 118-140, 1991.
Wan, J. K., Joint Estimation of Vertical Land Motion and Global Sea-Level Rise over the Past Six Decades Using Satellite Altimetry and Tide Gauge Records, Dissertation, The Ohio State University. 2015.
Wunsch, Carl, and Detlef Stammer, Atmospheric loading and the oceanic “inverted barometer” effect, Reviews of Geophysics. 35.1, 79-107, 1997.
Yi, Y.C., Determination of Gridded Mean Sea Surface from TOPEX, ERS-1 and GEOSAT Al-timeter Data, Rep. 434, Dept. Geod. Sci. Surv. 1995.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-02-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-02-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw