進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1402201801114600
論文名稱(中文) 全無機鈣鈦礦量子點摻雜膽固醇液晶雷射
論文名稱(英文) All-inorganic perovskite quantum dots doped cholesteric liquid crystal laser
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 106
學期 1
出版年 107
研究生(中文) 戴嘉恆
研究生(英文) Jia-Heng Dai
學號 L76044276
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-李佳榮
召集委員-羅光耀
口試委員-莫定山
口試委員-林弘萍
中文關鍵字 膽固醇液晶雷射  全無機鈣鈦礦  量子點  光子能隙 
英文關鍵字 cholesteric liquid crystal laser  all-inorganic perovskite  quantum dots  photonic bandgap 
學科別分類
中文摘要 本研究使用方便但有效率的水熱法合成全無機鈣鈦礦量子點,並成功摻入可視為光學共振腔之平面型膽固醇液晶,發展出高效率全無機鈣鈦礦量子點摻雜膽固醇液晶雷射器。為確認鈣鈦礦量子點基本材料特性,我們使用HRTEM, EDS, XRD等量測儀器來檢測合成出的量子點材料之尺寸大小、元素組成和晶格結構,最終確認所合成之鈣鈦礦量子點符合CsSnI3鈣鈦礦之黑色斜方晶相。將鈦鈣鈦礦量子點摻入膽固醇液晶製作出鈣鈦礦量子點摻雜膽固醇液晶雷射樣品,並測量雷射輸出偏振性、半高寬和量子點團聚的表面型態,可得到ge值達約1.8、半高寬窄至0.2 nm之雷射輸出,並確認量子點在膽固醇液晶中團聚現象會降低雷射效能。第二部份為改變膽固醇液晶中手性分子摻雜濃度,藉以改變光子能隙邊緣位置來調控雷測輸出波長,結果發現吸收與螢光兩條件之抗衡會影響雷射閥值。本實驗中最低之雷射閥值可達約1.86 µJ/pluse,此值與上述雷射特性(半高寬與ge值)與傳統染料摻雜膽固醇液晶雷射之特性已可相比擬。最後部分乃藉由外加場(溫度及交流與直流電壓)來調變CLC反射波段位置藉以達成鈣鈦礦量子點液晶雷射之多方式可調控性能。此研究中首次發展的全無機鈣鈦礦量子點摻雜膽固醇液晶雷射有潛力應用於未來新穎的光子學應用上,特別是在創新的可調控式光發射元件方面。
英文摘要 This work demonstrated for the first time an highly efficient all-inorganic perovskite quantum dots doped CLC (AIPQD-CLC) laser. The AIPQD material as an efficient optical gain medium in the optical resonator of the CLC planar texture can be obtained by pre-underdoing a low-cost solvothermal process.. Experimental results show that the AIPQD lattice structure corresponds to the black orthorhombic phase of CsSnI3 perovskite. The ge value and linewidth of the lasing signal from the AIPQD-CLC laser measured are around 1.8 and 0.21 nm, respectively. The aggregation of the AIPQDs in the CLC may significantly decrease the lasing performance. In second part, the position of the bandedge can be changed by changing the composition ratio of the chiral and LC such that the lasing wavelength of the AIPQD-CLC laser can be tuned. Experimental results show that both the absorption and photoluminescence (PL) of the QDs may competitively influence the lasing threshold. Additionally, the energy threshold of the AIPQD-CLC laser can be as low as 1.86 μJ/pulse. Including the lasing threshold, ge value and linewidth, the performances of the AIPQD-CLC laser are nearly comparable with those based on traditional dye-doped CLC lasers. In third part, the thermal, AC and DC electrical tuning features of the AIPQD-CLC laser were demonstarted. The AIPQD-CLC laser exhibited a high potential to become a new class of candidates for photonic applications, particularly in multi-tunable light-emitting devices.
論文目次 目錄 XII
圖目錄 XIV
表目錄 XVIII
第1章 緒論 1
第2章 液晶簡介 4
2-1液晶歷史與簡介 4
2-2液晶種類 5
2-2-1溶致型液晶 5
2-2-2熱致型液晶 6
2-3液晶物理特性 10
2-3-1折射率各向異性 11
2-3-2溫度的影響 12
2-3-3介電各向異性 13
2-3-4彈性連續體形變理論 15
2-4膽固醇液晶光學特性 17
2-4-1電磁波傳播於液晶中波方程之推導 17
2-4-2膽固醇液晶色散關係式 20
2-4-3膽固醇液晶光學特性 22
2-5膽固醇液晶螺距受調控之外在因素 23
2-5-1溫度 23
2-5-2摻雜濃度 24
2-5-3外加電場與磁場 25
第3章 研究相關理論 27
3-1雷射基本機制 27
3-1-1光子與粒子的交互作用 27
3-1-2居量反轉 28
3-1-3產生雷射的基本條件 29
3-2膽固醇液晶雷射 30
3-2-1 分佈式回饋雷射 30
3-2-2 膽固醇液晶雷射 31
3-3鈣鈦礦材料 33
3-3-1鈣鈦礦材料簡介 33
3-3-2鈣鈦礦材料發光二極體機制 35
3-3-3鈣鈦礦雷射 37
第4章 元件製作和實驗架設 38
4-1實驗材料簡介 38
4-2元件製作 40
4-2-1樣品玻璃的清洗 40
4-2-2 空樣品製作 40
4-2-3 鈣鈦礦量子點製備 40
4-2-4 鈣鈦礦量子點液晶雷射樣品製作 42
4-3 實驗架設 43
4-3-1平板樣品表面顯微型態與反射光譜觀察 43
4-3-2光致發光量測架設 44
4-3-3鈣鈦礦量子點摻雜膽固醇液晶雷射激發量測架設 45
第5章 結果與討論 47
5-1 CsSnI3全無機鈣鈦礦量子點液晶雷射 47
5-1-1 CsSnI3全無機鈣鈦礦量子點之基本特性 47
5-1-2 CsSnI3全無機鈣鈦礦量子點液晶雷射(AIPQD-CLC) 52
5-2 CsSnI3鈣鈦礦量子點摻雜膽固醇液晶雷射於不同光子能隙之影響 57
5-3鈣鈦礦量子點液晶雷射之溫度與電壓調控性能 65
第六章 結論與未來展望 74
6-1結論 74
6-2未來展望 75
References 76
參考文獻 [1] J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. App. Phys. 75(4), 1896–1899 (1994).
[2] T. H. Lin, Y. J. Chen, C.H. Wu, Y. G. Fuh, J. H. Liu and P. C. Yang, “Cholesteric liquid crystal laser with wide tuning capability”, App. Phys. Let. 86, 161120 (2005).
[3] M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” 92, 051108 (2008).
[4] B. K., H. Choi, M. Y. Jeong, and J. W. Wu, “Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal,” J. Opt. Soc. Am. B 27, 204–207 (2010).
[5] Y. Guo, C. Liu, H. Tanaka, and E. Nakamura, “Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light,” J. Phys. Chem. Lett. 6, 535−539 (2015).
[6] Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator,” Nano Lett. 16, 4624−4629 (2016).
[7] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering- Gallery Planar Nanolasers,” Nano Lett. 14, 5995−6001 (2014).
[8] Q. Sun and W. J. Yin, “Thermodynamic Stability Trend of Cubic Perovskites,” J. Am. Chem. Soc. 139, 14905−14908 (2017).
[9] I. Hwang, I. Jeong, J. Lee, M. J. Ko, and K. Yong, “Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation”, ACS Appl. Mater. Interfaces 7, 17330−17336 (2015)
[10] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells,” J. Phys. Chem. Lett. 7, 167−172 (2016).
[11] B. R. Sutherland and E. H. Sargent, “Perovskite photonic sources,” Nat. Photon. 10, 295–302 (2016).
[12] Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[13] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[14] Y. Su, X. Chen, W. Ji, Q. Zeng, Z. Ren, Z. Su, L. Liu, “Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X = Cl, Br, I) perovskite QDs toward the tunability of entire visible light,” ACS Appl. Mater. Interfaces 9, 33020−33028 (2017).
[15] F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai, Q Shen, “Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield,” ACS Nano 11, 10373−10383 (2017).
[16] J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska, R. G. Cortadella, B. Nickel, C. Cardenas-Daw, J. K. Stolarczyk, A. S. Urban, and J. Feldmann, “Quantum size effect in organometal halide perovskite nanoplatelets,” Nano Lett. 15, 6521–6527 (2015).
[17] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[18] L. J. Chen , J. D. Lin , S. Y. Huang, T. S. Mo, and C. R. Lee, “Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals,” Adv. Opt. Mater. 1, 637–643 (2013).
[19] P. J. Collings and M. Hird, “Introduction to Liquid Crystals: Chemistry and Physics,” CRC Press (1997).
[20] O. Lehmann, “Über fliessende Krystalle, Zeitschrift für Physikalische Chemie,” 4(1), 462–472 (1889).
[21] P. Oswald and P. Pieranski, “Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments,” CRC Press (1997).
[22] P. J. Collings and M. Hird, “Introduction to Liquid Crystals: Chemistry and Physics,” CRC Press (1997).
[23] 歐陽鐘灿,劉寄星,從肥皂泡到液晶生物膜,牛頓出版股份有限公司,54–60頁 (1995)。
[24] P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals,” Clarendon Press (1995).
[25] 王新久,液晶光學和液晶顯示,北京:科學出版社,19–24頁(2006).
[26] B. ahadur, “Liquid Crystals: Applications and Uses,” World Scientific (1990).
[27] I. C. Khoo, “Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena,” John Wiley & Sons (1995).
[28] A. Yariv, “Optical Electronics in Modern Communications,” Oxford University Press (1997).
[29] J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[30] 克潜·张,李德杰,微波與光電子學中的電磁理論,五南圖書出版股份有限公司,598-603頁(2004).
[31] P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. France 42, 53–60 (1981).
[32] P. E. Cladis, T. Garel, P. Pieranski, “Kossel diagrams show electric field induced cubic tetragonal structural transition in frustrated liquid crystal blue phases,” Phys. Rev. Lett. 57, 2841–2844 (1986).
[33] F. C. Frank, “Liquid crystals–on the theory of liquid crystals,” Disc. Faraday Soc. 25, 19–28 (1958).
[34] S. Teitler, B. W. Henvis, “Refraction in stratified, anisotropic media,” J. Opt. Soc. Am. 60, 830–834 (1970).
[35] D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
[36] C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 833 (1933).
[37] A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze, and N. Goto, “Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method,” J. Jpn. Appl. Phys. 21, 1543–1546 (1982).
[38] 葉蕙溱,光場對摻雜偶氮染料膽固醇液晶結構之影響與其在可調控光子元件之應用,博士論文,國立成功大學光電科學與工程研究所 (2008)。
[39] 丁勝懋,雷射工程導論(修訂第四版),中央圖書出版社(台北) (2002)。
[40] Joseph T. Verdeyen, “laser Electronics,” 3rd Ed., Prentice Hall (1995).
[41] H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[42] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[43] L.S. Goldberg and J.M. Schnur, “Tunable internal feedback liquid crystal laser,” US. Patent, 3, 771, 065 (1973).
[44] I. P. Il'chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals”, JETP Lett. 32, 27 (1981).
[45] 物理雙月刊(廿七卷五期)2005 年 10 月。
[46] M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[47] T.H. Lin, Y.J. Chen, C.H. Wu, Y.G. Fuh, J.H. Liu, P.C. Yang, “Cholesteric liquid crystal laser with wide tuning capability,” Appl. Phys. Lett. 86, 161120 (2005).
[48] V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
[49] K. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[50] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso superstructured organometal halide perovskites”, Science 338(2), 643–647 (2012).
[51] 唐立權、黃中垚、張振雄、李明憲,第一原理計算鈣鈦礦結構三元鹵化物之二階非線性光學係數,物理雙月刊(廿七卷四期),2005 年,第572頁。
[52] 尤書鴻,氮化銦量子點與薄膜之光激發螢光研究,國立交通大學電子物理研究所碩士論文。
[53] J. F. Chabot, M. Côté, and J. F. Brière, “Ab initio study of the electronic and structural properties of CsSnI3 perovskite”, Am. Phy. Soc. March Meeting (2004).
[54] A. G. Kontos, A. Kaltzoglou, E. Siranidi, D. Palles, G. K. Angeli, M. K. Arfanis, V. Psycharis, Y. S. Raptis, E. I. Kamitsos, P. N. Trikalitis, C. C. Stoumpos, M. G. Kanatzidis, and P. Falaras, “Structural stability, vibrational properties, and photoluminescence in cssni3 perovskite upon the addition of SnF2,” Inorg. Chem. 56, 84–91 (2017).
[55] S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews, S.G. Mhaisalkar “Perovskite materials for light mitting diodes and lasers,” Adv. Mater. 28(32), 6804–6834 (2016).
[56] M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65, 676 (1994).
[57] T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound”, Chem. Phys. Lett. 254, 103–108 (1996).
[58] X. Hong, T. Ishihara and A. V. Nurmikko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid State Commun. 84(6), 657–661 (1992).
[59] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 341–344 (2013).
[60] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342 (6156),
[61] 344–347 (2013).
[62] J. C. Yu, D. B. Kim, E. D. Jung, B. R. Lee, and M. H. Song, “High-performance perovskite light-emitting diodes via morphological control of perovskite films,” Nanoscale 8, 7036–7042 (2016).
[63] N. Yantara , S. Bhaumik , F. Yan , D. Sabba , H. A. Dewi , N. Mathews ,P. P. Boix , H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[64] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low temperature solution processed wavelength tunable perovskites for lasing,” Nat. Mater. 13, 476–480 (2014).
[65] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9(9), 687–692 (2014).
[66] X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, “Lead iodide perovskite light-emitting field-effect transistor,” Nat. Commun. 6, 7383 (2015).
[67] B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, “Conformal organohalide perovskites enable lasing on spherical resonators,” ACS Nano 8(10), 10947–10952 (2014).
[68] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, and X. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[69] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko , “Nanocrystals of cesium lead halide perovskites (CsPbX₃, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692 (2015).
[70] http://www.eurotek.com/Olympus/IX71/features/Two_tier.
[71] D. E. Scaife, P. F. Weller, and W. G. Fisher, “Crystal preparation and properties of cesium tin(u) trihalides,” J. Solid State Chem. 9, 308–314 (1974).
[72] T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, and M. L. Böhm, “Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals,” J. Am. Chem. Soc. 138, 2941−2944 (2016).
[73] L. J. Chen, C. R. Lee, Y. J. Chuang, Z. H. Wu, and C. Chen, “Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application,” J. Phys. Chem. Lett. 7, 5028−5035 (2016).
[74] D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials 3, 2260−2345 (2010).
[75] S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, “Recombination kinetics in organic inorganic perovskites: excitons, free charge, and subgap states,” Phys. Rev. Appl. 2, 034007 ( 2014).
[76] A. Bobrovsky, K. Mochalov, V. Oleinikov, A. Sukhanova, A. Prudnikau, M. Artemyev, V. Shibaev, and I. Nabiev, “Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots,” Adv. Mater. 24, 6216−6222 (2012).
[77] Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418−085426 (2012).
[78] X. F. Liu, R. Wang, Y. P. Jiang, Q. Zhang, X. Y. Shan, and X. H. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys. 108, 054310−054313 (2010).
[79] Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11, 4270−4274 (2011).
[80] Q. Zhang, X. Liu, M. I. B. Utama, J. Zhang, M. de la Mata, J. Arbiol, Y. Lu, T. C. Sum, and Q. Xiong, “Highly enhanced exciton recombination rate by strong electron−phonon coupling in single ZnTe nanobelt,” Nano Lett. 12, 6420−6427 (2012).
[81] M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals”, Science 283, 209−212 (1999).
[82] S. Chatterjee and T. K. Mukherjee, “Thermal luminescence quenching of amine-functionalized silicon quantum dots: a pH and wavelength-dependent study”, Phys. Chem. Chem. Phys. 17, 24078−24085 (2015).
[83] J. Ye, Y. Hou, G. Zhang, and C. Wu, “Temperature-induced aggregation of poly(n-isopropylacrylamide)-stabilized CdS quantum dots in water,” Langmuir 24, 2727−2731 (2008).
[84] Y. Wang and A. Hu, “Carbon quantum dots: synthesis, properties and applications,” J. Mater. Chem. C 2, 6921–6939 (2014).
[85] 林俊瑋,利用鐵電型液晶摻雜膽固醇液晶發展可低電壓調控色彩於全白光域之智能材料,碩士論文,國立成功大學光電科學與工程研究所 (2017)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw