進階搜尋


下載電子全文  
系統識別號 U0026-1402201700402600
論文名稱(中文) 蘭嶼豬糖尿病模式建立與傷口癒合研究
論文名稱(英文) Diabetic model of Lanyu pig and its wound healing study
校院名稱 成功大學
系所名稱(中) 生物科技研究所
系所名稱(英) Institute of Biotechnology
學年度 105
學期 1
出版年 106
研究生(中文) 梁致文
研究生(英文) Chih-Wen Liang
學號 L66031108
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-黃玲惠
召集委員-吳明哲
口試委員-歐弘毅
中文關鍵字 糖尿病  蘭嶼豬  傷口癒合 
英文關鍵字 wound healing  animal model  diabetic 
學科別分類
中文摘要 糖尿病為難治癒之疾病,導因於永久高血糖狀態導致諸多併發症,如粥狀動脈硬化、傷口復原緩慢或是久而不癒,造成患者生命處在危險之下。藉助於糖尿病動物模式之建立,如能開發出可用且,成本較為低廉的誘導及其治療模式,將是人類一大福祉。本研究重點在於建立良好可行的蘭嶼豬糖尿病模式。且以便於觀察記錄糖尿病傷口的糖尿病模式。而在傷口癒合的研究裡有許多不同的實驗方式,而傷口也有分不同種類,而根據實驗動物我們選擇了與人類相近的豬來進行,採用蘭嶼豬作為動物模式的試驗,除了傷口癒合的部分,也要根據不同狀況下之傷口進行觀察。而在結果方面,我們成功以四氧嘧啶(alloxan)在蘭嶼豬誘導出糖尿病症狀,且試驗出使用二次誘導之方法使蘭嶼豬糖尿病模式的成功率顯著提升,成為可行的糖尿病試驗平台。在糖尿病傷口試驗,發現糖尿病傷口的癒合時間顯著慢於正常傷口,且糖尿病傷口不易形成表皮層且表皮層與真皮層之間的乳突狀構造不明顯,由組織切片染色也可看出糖尿病傷口的癒合緩慢在相關皮膚構造上之蛋白結構缺乏,由後續傷口實驗
證明我們所建立的蘭嶼豬糖尿病模式是可行的。
英文摘要 In this study, we used the Lanyu pig develop a animal model for diabetic wound healing.First we use alloxan induced diabetes in Lanyu pig. We use 100、125、150 (mg/kg) dosage of alloxan induced to select the best dose for Lanyu pigs. The results showed that 100 mg/kg alloxan is not sufficient to induce diabetes. The dose of 125 mg/kg and 150 mg/kg alloxan can induce diabetes. But six days after 150 mg/kg induction causes the death of experimental animals. Its liver and kidney damage is determined by physiological value. Alloxan excessive doses can cause death. So we choose 125 mg/kg doses induced diabetes and diabetes pig model.In a 125 dosage repeat experiment, we found that the induction success rate was low. So we used 3,5 and 7 days to induce the injection of alloxan, and later found that the first injection and the second injection interval 3 days and 5 days to succeed Induced and the success rate increased significantly. The next step is to use the previously established diabetic pig model to establish diabetic wound mode. We used three different sizes of experimental wounds. Wound size is 3 × 3、6 × 6、12 × 12 (cm). Results from the screening test used in wound size after. From the results 3 × 3、6 × 6、12 × 12 (cm) diabetic wound healing and contraction slow with its than the control group to be. The 12 × 12 (cm) wound has several disadvantages such as wound care area is too large difficult healing schedule is too long, experimental animals caused a great burden. So we chose 3 × 3、6 × 6 (cm) as wound size in diabetic wound model. Thereby establishing a pig model of diabetes and diabetic wound diabetic skin pattern for future experiments provide a good experimental platform.
論文目次 中文摘要…………………………………………...……………...…………. I
英文摘要..………………………………………….……………...…...….... II
誌謝..………………………………………….…………………...……...... VI
目錄..………………………………………….…………………...……… VII
表目錄..………………………………………….…………………...……... X
圖目錄..………………………………………….…………...……………. XI
附圖目錄…………………………………………………………………. XIII
縮寫表..………………………………………….………………..…...… XIV
一、研究背景…………………………….……….......….……….………... 1
1-1糖尿病簡介…………………………...….....…....…...........……..... 1
1-2糖尿病生物模式簡介……………..…………………...………..…. 3
1-3皮膚構造及生理功能………………...….....………........................ 4
1-4皮膚傷口癒合………………………...……………….……..…...... 5
1-5糖尿病傷口……..………………………...……..…...….………..... 8
1-6研究目的……………………...…………...…...…………..………. 8
二、材料與方法…………………………………………………...…..…... 10
2-1實驗設計…………………………..………….………...………..... 10
2-2實驗藥品…………………………………...……....……………… 10
2-3 實驗儀器與器材………...………………….………………......... 11
2-4 實驗動物………………...……….…...………….……...……….. 12
2-5 豬隻實驗方法……………….…………...…….….…..…….….... 13
2-6 血糖檢測……………………………..……….………...…........... 14
2-7 生理數值建立………………….………..………....…...…..……. 14
2-8 葡萄糖耐受性測試(glucose tolerance test)……….……….…….. 15
2-9 糖尿病誘導……………………………....…..……….…..……… 16
2-10糖尿病之四氧嘧啶(alloxan)兩劑誘導………………..………… 17
2-11四氧嘧啶(alloxan)配製及保存……….…..……..…………...….. 18
2-12 Insulin配製與生理維持….…………………………................... 18
2-13糖尿病誘導之生理數值……………………………………......... 18
2-14糖尿病傷口開創…………………………………………...…….. 19
2-15傷口閉合與收縮面積……………………………..…...………… 20
2-16傷口採樣……………………………….…………….………..…. 21
2-17蘇木紫–伊紅染色法(Hematoxylin and eosin stain)….....……... 21
2-18 Verhoeff氏染色法(Verhoeff-Van Gieson Elastin Stain)…....……. 22
2-19苦味酸-天狼星紅染法(Pirco-sirius red stain)……………........… 23
三、結果……………………………………..…………………….....……. 25
3-1 蘭嶼豬生理數值………………………...…….….…….......……. 25
3-2 葡萄糖耐受性測試(glucose tolerance test)結果…………..…….. 26
3-3 糖尿病誘導劑量試驗…………...……………………………….. 27
3-4 糖尿病之四氧嘧啶(alloxan)兩劑誘導試驗…………….….……. 29
3-5 糖尿病豬生理數值追蹤…….…….…….….…………….……… 32
3-6 糖尿病豬傷口癒合…………………………....…………….…… 32
3-7 糖尿病豬與正常豬之傷口組織染色…………………...….……. 35
四、討論……………………………………….……………….………..… 39
4-1 蘭嶼豬糖尿病模式建立…………………….………….……...… 39
4-2 糖尿病豬誘導劑量……….…………………………………..….. 40
4-3 糖尿病豬誘導改進…….………………………………………… 40
4-4 糖尿病豬傷口……………………………………………...…….. 41
參考文獻…………………………………………………………....……… 44
圖表..................…………………………………………..…….…….…….. 53
附錄……………………………………………………………….…...…… 91
參考文獻 白火城、黃森源與林仁壽,家畜臨床血液生化學。立宇出版社,台南市,1996。

林銘仁,年齡對於蘭嶼豬皮膚特性之影響,國立成功大學生物科技研究所碩士論文,2015。

劉振軒、何逸僊、張文發、祝志平、王綉真,結締組織化學染色法,組織病理染色技術與圖譜-組織化學與染色,PRIT台灣養豬科學研究所,台灣,41-46, 1996。

Anderson, H. R., Stitt, A. W., Gardiner, T. A., Lloyd, S. J., and Archer, D. B. Induction of alloxan/streptozotocin diabetes in dogs: a revised experimental technique. Laboratory Animals 27, 281-285, 1993.

Bailey, C. J. Renal glucose reabsorption inhibitors to treat diabetes. Trends in Pharmacological Sciences 32, 63-71, 2011.

Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., and Tomic‐Canic, M. Growth factors and cytokines in wound healing. Wound Repair and Regeneration 16, 585-601, 2008.

Bollen, P., and Ellegaard, L. Developments in breeding Göttingen minipigs. Advances in Swine in Biomedical Research 1, 59-66, 1996.

Bollen, P. J. A., Madsen, L. W., Meyer, O., and Ritskes-Hoitinga, J. Growth differences of male and female Göttingen minipigs during ad libitum feeding: a pilot study. Laboratory Animals 39, 80-93, 2005.

Bollen, P. J., Hansen, A. K., and Alstrup, A. K. O. The laboratory swine, Chemical Rubber Company Press, 2010.

Bouwstra, J. A., and Honeywell-Nguyen, P. L. Skin structure and mode of action of vesicles. Advanced Drug Delivery Reviews 54, 41-55, 2002.

Brem, H., and Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. The Journal of Clinical Investigation 117, 1219-1222, 2007.

Brosky, G., and Logothetopoulos, J. Streptozotocin diabetes in the mouse and guinea pig. Diabetes 18, 606-611, 1969.

Chiang, J. L., Kirkman, M. S., Laffel, L. M., and Peters, A. L. Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes care 37, 2034-2054, 2014.

Chu, L. M., Osipov, R. M., Robich, M. P., Feng, J., Sheller, M. R., and Sellke, F. W. Effect of thrombin fragment (TP508) on myocardial ischemia reperfusion injury in a model of type 1 diabetes mellitus. Circulation 122, S162-S169, 2010.

DeFronzo, R. A., and Abdul-Ghani, M. Assessment and treatment of cardiovascular risk in prediabetes: impaired glucose tolerance and impaired fasting glucose. The American Journal of Cardiology 108, 3B-24B, 2011.

Diegelmann, R. F., and Evans, M. C. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9, 283-289, 2004.

DiPietro, L. A. Wound healing: the role of the macrophage and other immune cells. Shock 4, 233-240, 1995.

Dixon, J. L., Stoops, J. D., Parker, J. L., Laughlin, M. H., Weisman, G. A., and Sturek, M. Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. Arteriosclerosis Thrombosis and Vascular Biology 19, 2981-2992, 1999.

Dixon, J. L., Shen, S., Vuchetich, J. P., Wysocka, E., Sun, G. Y., and Sturek, M. Increased atherosclerosis in diabetic dyslipidemic swine protection by atorvastatin involves decreased VLDL triglycerides but minimal effects on the lipoprotein profile. Journal of Lipid Research 43, 1618-1629, 2002.

Duncan, L. J. P. The intravenous glucose tolerance test. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences 41, 85-96, 1956.
Dunn, J. S., Kirkpatrick, J., McLetchie, N. G. B., and Telfer, S. V. Necrosis of the islets of Langerhans produced experimentally. The Journal of Pathology and Bacteriology 55, 245-257, 1943.

Efron, P. A., and Moldawer, L. L. Cytokines and wound healing: the role of cytokine and anticytokine therapy in the repair response. Journal of Burn Care and Research 25, 149-160, 2004.

Eming, S. A., Krieg, T., and Davidson, J. M. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology 127, 514-525, 2007.

Engelgau, M. M., Narayan, K. M., and Herman, W. H. Screening for type 2 diabetes. Diabetes care 23, 1563-1580, 2000.

Ganda, O. P., Rossini, A. A., and Like, A. A. Studies on streptozotocin diabetes. Diabetes 25, 595-603, 1976.

Gantwerker, E. A., and Hom, D. B. Skin: histology and physiology of wound healing. Facial Plastic Surgery Clinics of North America 19, 441-453, 2011.

Gerrity, R. G., Natarajan, R., Nadler, J. L., and Kimsey, T. Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50, 1654-1665, 2001.

Gillitzer, R., and Goebeler, M. Chemokines in cutaneous wound healing. Journal of Leukocyte Biology 69, 513-521, 2001.

Goodson, W. H., and Hunt, T. K. Studies of wound healing in experimental diabetes mellitus. Journal of Surgical Research 22, 221-227, 1977.

Greenhalgh, D. G. The role of apoptosis in wound healing. The International Journal of Biochemistry and Cell Biology 30, 1019-1030, 1998.

Guo, S. A., and DiPietro, L. A. Factors affecting wound healing. Journal of Dental Research 89, 219-229, 2010.

Hainsworth, D. P., Katz, M. L., Sanders, D. A., Sanders, D. N., Wright, E. J., and Sturek, M. Retinal capillary basement membrane thickening in a porcine model of diabetes mellitus. Comparative Medicine 52, 523-529, 2002.

Hill, B. J., Dixon, J. L., and Sturek, M. Effect of atorvastatin on intracellular calcium uptake in coronary smooth muscle cells from diabetic pigs fed an atherogenic diet. Atherosclerosis 159, 117-124, 2001.

Hirsch, T., Spielmann, M., Zuhaili, B., Koehler, T., Fossum, M., Steinau, H. U., and Eriksson, E. Enhanced susceptibility to infections in a diabetic wound healing model. Biomed Central Genomics Surgery 8, 5, 2008.

Hirsch, T., Spielmann, M., Velander, P., Zuhaili, B., Bleiziffer, O., Fossum, M., and Eriksson, E. Insulin‐like growth factor‐1 gene therapy and cell transplantation in diabetic wounds. The Journal of Gene Medicine 10,
1247-1252, 2008.

Hirsch, T., Spielmann, M., Zuhaili, B., Fossum, M., Metzig, M., Koehler, T., and Eriksson, E. Human beta‐defensin‐3 promotes wound healing in infected diabetic wounds. The Journal of Gene Medicine 11, 220-228, 2009.

Holbrook, K. A. Structure and function of the developing human skin. Physiology Biochemistry and Molecular Biology of the Skin 1, 83-89, 1991.

Jacinto, A., Martinez-Arias, A., and Martin, P. Mechanisms of epithelial fusion and repair. Nature Cell Biology 3, E117-E123, 2001.

Johansen, T., Hansen, H. S., Richelsen, B., and Malmlöf, K. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comparative Medicine 51, 150-155, 2001.

Judah, D., Rudkouskaya, and A., Dagnino, L. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling. Plos One 7, 3670-3685, 2012.

Junod, A., Lambert, A. E., Stauffacher, W.,and Renold, A. E. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. Journal of Clinical Investigation 48, 2129, 1969.
King, A. J. The use of animal models in diabetes research. British Journal of Pharmacology 166, 877-894 2012.

King, J. L., Mason, J. O., Cartner, S. C., and Guidry, C. The influence of alloxan-induced diabetes on Müller cell contraction-promoting activities in vitreous. Investigative Ophthalmology and Visual Science 52, 7485-7491, 2011.

Kumar, S., Singh, R., Vasudeva, N., and Sharma, S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc Diabetol 11, 1-13, 2012.

Larsen, M. L., Hørder, M., and Mogensen, E. F. Effect of long-term monitoring of glycosylated hemoglobin levels in insulin-dependent diabetes mellitus. New England Journal of Medicine 323, 1021-1025, 1990.

Lazarus, G. S., Cooper, D. M., Knighton, D. R., Margolis, D. J., Percoraro, R. E., Rodeheaver, G., and Robson, M. C. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair and Regeneration 2, 165-170, 1994.

Lenzen, S. The mechanisms of alloxan-and streptozotocin-induced diabetes.
Diabetologia 51, 216-226, 2008.

Lenzen, S., and Panten, U. Alloxan: history and mechanism of action. Diabetologia 31, 337-342, 1988.

Litten-Brown, J. C., Corson, A. M., and Clarke, L. Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 4, 899-920, 2010.

Lozner, E. L., Winkler, A. W., Taylor, F. H. L., and Peters, J. P. The intravenous glucose tolerance test. Journal of Clinical Investigation 20, 507, 1941.

Larsen, M. O., and Rolin, B. Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. Institute for Laboratory Animal Research Journal 45, 303-313, 2004.

Madden, J. W., and Peacock Jr, E. E. Studies on the biology of collagen during wound healing. 3. Dynamic metabolism of scar collagen and remodeling of dermal wounds. Annals of Surgery 174, 511, 1971.

Mansford, K. R. L., and Opie, L. Comparison of metabolic abnormalities in diabetes mellitus induced by streptozotocin or by alloxan. The Lancet 291, 670-671, 1968.

Marieb, E., and Hoen, K. Skin structure and function. Human Anatomy and Physiology, Pearson Benjamin Cummings, San Francisco 233-240, 2007.

Martin, P. Wound healing aiming for perfect skin regeneration. Science 276, 75-81, 1997.

O'hea, E. K., Allee, G. L., Leveille, G. A., and Baker, D. H. Observations on the alloxan-diabetic pig. International Journal of Biochemistry 2, 177-181, 1971.

Otis, C. R., Wamhoff, B. R., and Sturek, M. Hyperglycemia-induced insulin resistance in diabetic dyslipidemic Yucatan swine. Comparative Medicine 53, 53-64, 2003.

Pacini, G., Tonolo, G., Sambataro, M., Maioli, M., Ciccarese, M., Brocco, E., and Nosadini, R. Insulin sensitivity and glucose effectiveness: minimal model analysis of regular and insulin-modified FSIGT. American Journal of Physiology-Endocrinology and Metabolism 274, E592-E599, 1998.

Panepinto, L. M., Phillips, R. W., Wheeler, L. R., and Will, D. H. The Yucatan minature pig as a laboratory animal. Laboratory Animal Science 28, 308-313, 1987.
Park, J. E., and Barbul, A. Understanding the role of immune regulation in wound healing. The American Journal of Surgery 187, S11-S16, 2004.

Patlak, M. New weapons to combat an ancient disease: treating diabetes. The Federation of American Societies for Experimental Biology Journal 16, 1853e-1853e, 2002.

Phillips, R. W., Panepinto, L. M., Will, D. H., and Case, G. L. The effects of alloxan diabetes on Yucatan miniature swine and their progeny. Metabolism 29, 40-45, 1980.

Radenković, M., Stojanović, M., and Prostran, M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. Journal of Pharmacological and Toxicological Methods 78, 13-31, 2016.

Rees, D. A., and Alcolado, J. C. Animal models of diabetes mellitus. Diabetic Medicine 22, 359-370, 2005.

Reinke, J. M., and Sorg, H. Wound repair and regeneration. European Surgical Research 49, 35-43, 2012.

Renner, S., Dobenecker, B., Blutke, A., Zöls, S., Wanke, R., Ritzmann, M., and Wolf, E. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 86, 406-421, 2016.

Rerup, C., and Tarding, F. Streptozotocin-and alloxan-diabetes in mice. European Journal of Pharmacology 7, 89-96, 1969.

Robson, M. C., Steed, D. L., and Franz, M. G. Wound healing: biologic features and approaches to maximize healing trajectories. Current Problems in Surgery 38, A1-140, 2001.

Rohilla, A., and Ali, S. Alloxan induced diabetes: mechanisms and effects.
International Journal of Research in Pharmaceutical and Biomedical Sciences 3, 819-823, 2012.

Schultz, G. S., and Mast, B. A. Molecular analysis of the environments of healing and chronic wounds: cytokines, proteases and growth factors. Primary Intention 7, 7-15, 1999.

Schultz, G. S., and Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair and Regeneration 17, 153-162, 2009.

Silva, J. P., Köhler, M., Graff, C., Oldfors, A., Magnuson, M. A., Berggren, P. O., and Larsson, N. G. Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nature Genetics 26, 336-340, 2000.

Singer, A. J., and Clark, R. A. Cutaneous wound healing. New England Journal of Medicine 341, 738-746, 1999.

Sodha, N. R., Boodhwani, M., Clements, R. T., Xu, S. H., Khabbaz, K. R., and Sellke, F. W. Increased antiangiogenic protein expression in the skeletal muscle of diabetic swine and patients. Archives of Surgery 143, 463-470, 2008.

Stricker-Krongrad, A., Shoemake, C. R., and Bouchard, G. F. The miniature swine as a model in experimental and translational medicine. Toxicologic Pathology, 0192623316641784, 2016.

Stumvoll, M., Mitrakou, A., Pimenta, W., Jenssen, T., Yki-Järvinen, H. A. N. N. E. L. E., Van Haeften, T., and Gerich, J. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 23, 295-301, 2000.

Sullivan, T. P., Eaglstein, W. H., Davis, S. C., and Mertz, P. The pig as a model for human wound healing. Wound Repair and Regeneration 9, 66-76, 2001.

Tuomi, T., Santoro, N., Caprio, S., Cai, M., Weng, J., and Groop, L. The many faces of diabetes: a disease with increasing heterogeneity. The Lancet 383, 1084-1094, 2014.

Velander, P., Theopold, C., Hirsch, T., Bleiziffer, O., Zuhaili, B., Fossum, M., and Svensson, H. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair and Regeneration 16, 288-293, 2008.
Velander, P., Theopold, C., Bleiziffer, O., Bergmann, J., Svensson, H., Feng, Y., and Eriksson, E. Cell suspensions of autologous keratinocytes or autologous fibroblasts accelerate the healing of full thickness skin wounds in a diabetic porcine wound healing model. Journal of Surgical Research 157, 14-20, 2009.

Visse, R., and Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases. Circulation Research 92, 827-839, 2003.

Werner, S., and Grose, R. Regulation of wound healing by growth factors and cytokines. Physiological Reviews 83, 835-870, 2003.

Woo, Y. C., Park, S. S., Subieta, A. R., and Brennan, T. J. Changes in tissue pH and temperature after incision indicate acidosis may contribute to postoperative pain. The Journal of the American Society of Anesthesiologists 101, 468-475, 2004.

Zhang, P., Zhang, X., Brown, J., Vistisen, D., Sicree, R., Shaw, J., and Nichols, G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Research and Clinical Practice 87, 293-301, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-02-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw