進階搜尋


下載電子全文  
系統識別號 U0026-1401201123384000
論文名稱(中文) 利用新穎表面起始聚合反應系統製備核/殼型功能性高分子微球及其應用
論文名稱(英文) Utilizing a novel surface initiated polymerization system to prepare core/shell functional polymer microspheres and its application
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 99
學期 1
出版年 99
研究生(中文) 陳經文
研究生(英文) Ching-Wen Chen
學號 n3894124
學位類別 博士
語文別 中文
論文頁數 145頁
口試委員 指導教授-黃耀輝
召集委員-陳志勇
口試委員-林睿哲
口試委員-王振乾
口試委員-李俊毅
口試委員-芮祥鵬
口試委員-談駿嵩
中文關鍵字 聚苯乙烯微球  十二烷基磺酸鈉  次硫酸甲醛鈉  縮水甘油甲基丙烯酸脂  亞胺二乙酸    硼氫化鈉 
英文關鍵字 Polystyrene microsphere  Ruthenium  Sodium borohydride  Glycidyl methacrylate  Iminodiacetic acid  Sodium dodecyl sulfate  Sodium formaldehyde sulfoxylate 
學科別分類
中文摘要 本研究第一部份先以分散聚合法製備數種單分散聚苯乙烯(PS)微球與聚甲基丙烯酸甲酯(PMMA)微球,再將這些微球分別與水性樹脂混合製成不同條件的光學擴散板。光學性質測量結果顯示當基材樹脂與高分子微球間的界面面積愈大,或是折射率差異愈大時可得到較佳的霧度(H%),約在界面總表面積為4,5000cm2時有一最佳值65%。另外,本研究進一步使用單分散PS為種子微球,分別以偶氮二異丁腈(AIBN)為起始劑製備多孔微球,以及利用特殊SLS-SFS氧化還原乳化劑起始系統製備中空微球,同樣將此兩種微球製成光學擴散板並量測其光學性質。量測結果顯示多孔微球添加量20wt%時即可達到65%霧度,但全光線透過率(T%)急劇下降至43%;而中空微球添加量25wt%時也可達到65%霧度,並維持高的全光線透過率65%。這些由實心微球、多孔微球與中空微球製成的光學擴散板與商品化擴散板Nitto與Asahi作比較,顯示中空微球有較佳的光擴散特性並與光學模擬結果一致。
本研究第二部分探討聚丙烯酸(PAA)穩定劑、AIBN起始劑、乙醇(EtOH)溶劑與苯乙烯(St)單體等反應參數對PS微球粒徑大小與分佈的影響。一般而言,分散聚合體系中隨著穩定劑含量與混合溶劑極性增加,微球的粒徑大小與分佈下降;隨著單體與起始劑添加量增加,微球的粒徑大小與分佈上升。另外,由於本實驗室過去研究發現,由於陰離子型乳化劑十二烷基磺酸鈉(SLS)的加入,使原本次硫酸甲醛鈉(SFS)對乙烯類單體具有選擇性反應的特性消失,轉而能夠誘發任何乙烯類單體進行聚合反應。因此,本研究詳細說明如何找出SLS-SFS氧化還原乳化劑起始系統的最佳配方,利用此一新穎表面起始特性與種子分散聚合法製備具核/殼(Core/shell)結構的高分子微球。這些最佳化反應參數包括:(1)架橋劑含量10~20%;(2)SLS添加量為1/2最大吸附量;(3)SLS/SFS添加量比例為1:1;(4)共溶劑依反應單體油溶性取最小量;(5)滴定速度為0.3ml/min。
最後,本研究說明另一項應用,運用SLS-SFS氧化還原乳化劑起始系統與縮水甘油甲基丙烯酸酯-亞胺二乙酸(GMA-IDA)螫合性單體,製備釕(Ru)固定化高分子擔體觸媒,並評估該觸媒水解硼氫化鈉(NaBH4)產氫的效果。由於 SLS-SFS 起始系統可在微球表面引發螫合性單體GMA-IDA聚合形成具有核/殼結構的螫合性微球 PS/xP(GMA-IDA),因此將螫合性微球吸附Ru3+離子後再以硼氫化鈉水溶液還原成Ru(0) 奈米顆粒。實驗發現還原的Ru(0)在特定的還原條件下,奈米顆粒不凝集,粒徑小且均一的觸媒可提供更多的活性催化面積,因而提高水解產氫速率,在1wt% NaBH4稀釋水溶液的平均產氫速率達215.9ml/min g-cat.。
英文摘要 On the first part of this research, polystyrene (PS) micropsheres were prepared by dispersion polymerization where 2,2’-azobis(isobutyronitrile) (AIBN) and poly(acrylic acid) (PAA) were utilized as initiator and steric stabilizer respectively. The effects of the PAA stabilizer, AIBN initiator, St monomer, and EtOH solvent on particle size and size distribution were reviewed in this article. On the other hand, optical properties including total light transmittance (T%) and transmittance haze (H%) were performed when the monodisperse PS microspheres were applied as diffusive agents. Optical performance of these diffuser plates are conducted both in test bed and by optical simulation for comparison.
Our previous study in laboratory has found that the surfactant Sodium Lauryl Sulfate (SLS) can react with Sodium Formaldehyde Sulfoxylate (SFS) to initiate emulsion polymerization of any vinyl monomer. By taking advantages of this novel SLS-SFS surface initiated polymerization system and seeded dispersion polymerization mechanism, polymer microspheres with core-shell structure are able to produce basing on specific reaction conditions. The second part of this research is to describe and optimize the reaction formula step by step.
The third part of this research is to describe an application of this novel surface initiated polymerization system. A polymer-supported catalyst which is ruthenium (Ru) nanoparticles (approx. 16nm) immobilized on a monodisperse polystyrene microsphere (2.65m) is prepared for hydrogen generation. By taking advantages of this unique interface-initiated system (SLS/SFS) and a chelating monomer, 2-methacrylic acid 3-(biscarboxymethylamino)-2-hydroxy-propyl ester, (GMA-IDA) which was also developed in our laboratory, Ru3+ ions are chelated and chemically reduced to Ru(0) nanoparticles which are predominating over PS surface. A preliminary study of the catalysts on the hydrolysis of alkaline NaBH4 solution and its durability are examined. The results reveal that the hydrogen generation rate is 215.9ml/min g-cat. in a diluent solution containing 1wt% NaBH4 only and1wt% NaOH, and it is possible to recycle the catalyst in the reaction.
論文目次 目錄
中文摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 XI
圖目錄 XIII
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第 2 章 文獻回顧 6
2.1 光學擴散板(膜)介紹 6
2.2 光散射原理 10
2.2.1 雙向散射分佈函數 10
2.2.2 背光源效率計算 13
2.3 分散聚合法 14
2.3.1 分散聚合機構 16
2.3.2 分散聚合法製備聚苯乙烯微球 19
2.4 種子分散聚合 21
2.5 SLS-SFS起始系統介紹 22
2.6 GMA-IDA螫合性單體介紹 25
2.7 硼氫化鈉(NaBH4)水解產氫技術介紹 26
第 3 章 實驗內容 28
3.1 實驗架構 28
3.2 藥品 30
3.3 儀器 32
3.4 實驗步驟 33
3.4.1 製備聚丙烯酸穩定劑 33
3.4.2 分散聚合法製備高分子微球 33
3.4.3 以AIBN起始製備聚二乙烯基苯多孔微球 33
3.4.4 以SLS-SFS起始製備聚二乙烯基苯中空微球 34
3.4.5 光擴散板的製備 34
3.4.6 聚苯乙烯微球形態與其光擴散效果的鑑定 34
3.4.7 螫合性單體GMA-IDA的合成 35
3.4.8 功能性高分子微球PS/xP(GMA-IDA)-Ru的製備 36
3.5 儀器分析方式 38
3.5.1 聚苯乙烯微球形態鑑定 38
3.5.2 Ru固定化高分子擔體觸媒鑑定 38
第 4 章 實驗結果與討論 40
4.1 分散聚合法製備PS微球反應參數討論 40
4.1.1 穩定劑PAA的影響 40
4.1.2 起始劑AIBN的影響 46
4.1.3 溶劑EtOH的影響 50
4.1.4 單體St的影響 54
4.2 擴散劑之光學性質探討 57
4.2.1 擴散劑粒徑與材料對光學性質的影響 57
4.2.2 混摻不同粒徑擴散劑對光學性質的影響 61
4.2.3 擴散膜厚度對光學性質的影響 64
4.2.4 多孔微球的擴散膜性質探討 66
4.2.5 核/殼型中空微球的擴散膜性質探討 68
4.3 擴散板(膜)的光學特性量測與光學模擬 71
4.3.1 擴散板(膜)的光學特性量測 71
4.3.2 擴散板(膜)的光學模擬 81
4.4 SLS-SFS表面起始之種子分散聚合法反應參數探討 85
4.4.1 乳化劑SLS飽和吸附量測試 86
4.4.2 TPGDA架橋劑 88
4.4.3 乳化劑SLS的添加量與SLS/SFS的相對比例 92
4.4.4 DVB架橋劑 95
4.4.5 共溶劑EtOH添加量 98
4.4.6 滴定速率 101
4.4.7 TMPTA架橋劑 104
4.5 Ru固定化高分子觸媒的鑑定與產氫評估 107
4.5.1 Ru固定化高分子觸媒的鑑定 107
4.5.2 Ru固定化高分子觸媒的產氫評估 115
第 5 章 結論 120
5.1 分散聚合法製備單分散PS微球 120
5.2 SLS-SFS 表面起始之種子分散聚合法反應參數探討 120
5.3 Ru固定化高分子擔體產氫觸媒 121
5.4 未來研究之建議 121
參考文獻 123
發表著作 144
自述 145
參考文獻 參考文獻
1 周曉英, 張光華, 朱軍峰, 王培培. 液晶顯示器襯墊用大粒徑單分散性交聯聚苯乙烯微球的制備. 石油化工 38, 432, 2009.
2 周曉英, 張光華. 大粒徑單分散聚合物微球的制備及其在LCD中的應用進展. 塑料 37, 37-51, 2008.
3 趙靜賢, 李巧玲. 磁性生物高分子微球的研究. 上海化工 33, 21-26, 2008.
4 曹陽. 固定化酶載體材料的研究進展. 黑龍江科技信息 9, 1, 2009.
5 劉瑤, 張海麗, 韓德艷. 葡聚糖磁性微球在生物醫學領域的應用. 化學與生物工程 24, 5-8, 2007.
6 曲瑞芳, 孔英俊, 曲建波, 馬光輝, 馬潤宇, 蘇志國, 羅堅. 超大孔聚苯乙烯微球固定蛋白質. 過程工程學報 9, 1164-1168, 2009.
7 張英. HPLC填料用多孔型高分子微球的合成與特性研究. 北華大學學報(自然科學版) 8, 213-216, 2007.
8 趙亮, 蘇暢, 馬洪林. 可生物降解材料載藥雙層微球的制備方法及其應用. 中國組織工程研究與臨床康復 13, 5759-5762, 2009.
9 魏海霞, 趙凱, 紀鑫, 金媛媛, 孫慶申, 李國新, 周東坡. 殼聚糖微球的制備及其在藥物載體中的應用進展. 中國新藥雜志 17, 1105-1108, 2008.
10 吳豐順, 何敬強, 吳懿平, 安兵, 王佳, 張金松. 各向異性導電膠膜用單分散聚苯乙烯微球的合成. 功能材料 37, 1848-1858, 2006.
11 吳懿平, 袁忠發, 吳大海, 吳豐順, 安兵. 各向異性導電膠膜新型填充粒子的研究. 電子元件與材料 24, 28-31, 2005.
12 王振乾, 博士論文. 國立成功大學, 台南, 1995.
13 C. L. Hsueh, C. Y. Chen, J. R. Ku, S. F. Tsai, Y. Y. Hsu, F. H. Tsau, M. S. Jeng. Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution. Journal of Power Sources 177, 485-492, 2008. 10.1016/j.jpowsour.2007.11.096|ISSN 0378-7753
14 王文獻, 吳耀庭, 溫俊祥, in Book LCD光學擴散板材料技術簡介, ed., ed. by Editor, 財團法人工業技術研究院, City, 2006, Vol. 234, Chap. Chapter.
15 C. Y. Wu, T. H. Chiang, C. C. Hsu. Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods. Optics Express 16, 19978-19986, 2008.
16 T. R. M. Sales. Structured microlens arrays for beam shaping. Optical Engineering 42, 3084-3085, 2003. 10.1117/1.1618817
17 S. I. Chang, J. B. Yoon, H. K. Kim, J. J. Kim, B. K. Lee, D. H. Shin. Microlens array diffuser for a light-emitting diode backlight system. Optics Letters 31, 3016-3018, 2006.
18 P. S. Heckbert, Ph.D., University of California, Berkeley, 1991.
19 F. E. Nicodemus. Directional reflectance and emissivity of an opaque surface. Applied Optics 4, 767, 1965.
20 V. N. Mahajan, Optical imaging and aberrations, Part Ι ray geometrical optics. Editor, SPIE PRESS, Washington, 1998.
21 R. W. Boyd, Radiometry and the detection of optical radiation. Editor, John Wiley & Sons, New York, 1983.
22 K. E. J. Barrett. Dispersion polymerisation in organic media. British Polymer Journal 5, 259-271, 1973.
23 M. J. Yim, J. Hwang, K. W. Paik. Anisotropic conductive films (ACFs) for ultra-fine pitch Chip-On-Glass (COG) applications. International Journal of Adhesion and Adhesives 27, 77-84, 2007. 10.1016/j.ijadhadh.2005.12.006
24 J. W. Vanderhoff, M. S. Elaasser, F. J. Micale, E. D. Sudol, C. M. Tseng, A. Silwanowicz, D. M. Kornfeld, F. A. Vicente. Preparation of large-particle-size monodisperse latexes in space - Polymerization kinetics and process-development. Journal of Dispersion Science and Technology 5, 231-246, 1984.
25 J. Ugelstad, P. C. Mork, K. H. Kaggerud, T. Ellingsen, A. Berge. Swelling of oligomer-polymer particles. New methods of preparation. Advances in Colloid and Interface Science 13, 101-140, 1980.
26 M. Okubo, M. Shiozaki, M. Tsujihiro, Y. Tsukuda. Studies on suspension and emulsion .122. Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid and Polymer Science 269, 222-226, 1991.
27 S. Omi, K. Katami, A. Yamamoto, M. Iso. Synthesis of polymeric microspheres employing SPG emulsification technique. Journal of Applied Polymer Science 51, 1-11, 1994.
28 K. P. Lok, C. K. Ober. Particle size control in dispersion polymerization of polystyrene. Canadian Journal of Chemistry 63, 209-216, 1985.
29 K. P. L. M. L. H. Christopher K. Ober. Monodispersed, micron-sized polystyrene particles by dispersion polymerization. Journal of Polymer Science: Polymer Letters Edition 23, 103-108, 1985.
30 C. M. Tseng, Y. Y. Lu. Uniform polymer particles by dispersion polymerization in alcohol. Journal of Polymer Science Part A - Polymer Chemistry 24, 2995-3007, 1986.
31 A. J. Paine, W. Luymes, J. McNulty. Dispersion polymerization of styrene in polar-solvents. 6. Influence of reaction parameters on particle-size and molecular-weight in poly(n-vinylpyrrolidone)-stabilzed reactions. Macromolecules 23, 3104-3109, 1990.
32 S. Kobayashi, H. Uyama, I. Yamamoto, Y. Matsumoto. Preparation of monodispersed poly(methyl methacrylate) particle in the size of micron range. Polymer Journal 22, 759-761, 1990.
33 S. Kobayashi, H. Uyama, Y. Matsumoto, I. Yamamoto. Size control of poly(methyl methacrylate) particles by dispersion polymerization in polar media. Makromolekulare Chemie - Macromolecular Chemistry and Physics 193, 2355-2362, 1992.
34 S. Shen, E. D. Sudol, M. S. Elaasser. Dispersion polymerization of methyl methacrylate - Mechanism of particle formation. Journal of Polymer Science Part A - Polymer Chemistry 32, 1087-1100, 1994.
35 S. Shen, E. D. Sudol, M. S. Elaasser. Control of particle-size in dispersion polymerizaion of methyl-methacrylate. Journal of Polymer Science Part A - Polymer Chemistry 31, 1393-1402, 1993.
36 Y. Almog, S. Reich, M. Levy. Monodisperse polymeric spheres in the micron size range by a single step process. British Polymer Journal 14, 131-136, 1982.
37 S. Kobayashi, H. Uyama, H. J. Choi, Y. Matsumoto. Preparation of micron-size monodisperse poly(methyl Methacrylate) particles using poly(2-oxazoline) macromonomer. Polymer International 30, 265-270, 1993.
38 K. Cao, J. Yu, B. G. Li, B. F. Li, Z. R. Pan. Micron-size uniform poly(methyl methacrylate) particles by dispersion polymerization in polar media 1. Particle size and particle size distribution. Chemical Engineering Journal 78, 211-215, 2000.
39 O. K. Kim, K. Lee, K. Kim, B. H. Lee, S. Choe. Optimum conditions for preparing micron-sized PMMA beads in the dispersion polymerization using PVA. Colloid and Polymer Science 284, 909-915, 2006.
40 O. H. Kim, K. Lee, K. Kim, B. H. Lee, S. Choe. Effect of PVA in dispersion polymerization of MMA. Polymer 47, 1953-1959, 2006. 10.1016/j.polymer.2006.01.025
41 S. E. Shim, H. Jung, K. Lee, J. M. Lee, S. Choe. Dispersion polymerization of methyl methacrylate with a novel bifunctional polyurethane macromonomer as a reactive stabilizer. Journal of Colloid and Interface Science 279, 464-470, 2004. 10.1016/j.jcis.2004.06.071
42 A. Ho, J. Chang, W. K. Chin, H. T. Hsieh. Synthesis and structural characterizations of "core-shell"-type nickel-coated polymeric particles. Journal of Polymer Research 13, 285-291, 2006. 10.1007/s10965-005-9037-3
43 S. Shen, M. S. Elaasser, V. L. Dimonie, J. W. Vanderhoff, E. D. Sudol. Preparation and morphological characterization of microscopic composite particles. Journal of Polymer Science Part A - Polymer Chemistry 29, 857-867, 1991.
44 T. CORNER. Polyelectrolyte stabilised latices part 1,preparation. Colloids and Surfaces 3, 119-129, 1981.
45 R. Buscall, T. Corner. Poly-electrolyte stabilized lattices .2. Characterization and colloidal behavior. Colloids and Surfaces 5, 333-351, 1982.
46 馬光輝, 蘇忠國, 高分子微球材料. Editor, 化學工業出版社, 北京, 2004.
47 K. Zhang, Y. Lei, Y. Wang. Preparation of monodisperse polystyrene microspheres and its influence factors. Journal of Functional Polymer 15, 341-344, 2002.
48 曹同玉, 劉慶普, 胡金生, 聚合物乳液合成原理性能及應用. 2 ed., Editor, 化學工業出版社, 北京, 2007.
49 張洪濤, 黃錦霞, 乳液聚合新技術及應用. 2 ed., Editor, 化學工業出版社, 北京, 2007.
50 J. Ugelstad, H. R. Mfutakamba, P. C. Mork, T. Ellingsen, A. Berge, R. Schmid, L. Holm, A. Jorgedal, F. K. Hansen, K. Nustad. Preparation and application of monodisperse polymer particles. Journal of Polymer Science - Polymer Symposia, 225-240, 1985.
51 H. Kawaguchi. Functional polymer microspheres. Progress in Polymer Science 25, 1171-1210, 2000.
52 J. Ugelstad, U.S. 4,459,378, 1982.
53 A. J. Paine. Dispersion polymerization of styrene in polar-solvents .7. A simple mechanistic model to predict particle-size. Macromolecules 23, 3109-3117, 1990.
54 S. F. Ahmed, G. W. Poehlein. Kinetics of dispersion polymerization of styrene in ethanol .1. Model development. Industrial & Engineering Chemistry Research 36, 2597-2604, 1997.
55 J. W. Vanderhoff, J. F. Vitkuske, E. B. Bradford, T. J. Alfrey. Some factors involved in the preparation of uniform particle size latexes. Journal of Polymer Science 20, 225-234, 1956.
56 鄭細鳴, 塗偉萍, 范榮玉. 單步溶脹聚合法製備單分散分子印跡聚合物微球:孔結構及其吸附與識別性能. 功能材料 36, 1811-1816, 2005.
57 A. J. Paine, Y. Deslandes, P. Gerroir, B. Henrissat. Dispersion polymerization of styrene in polar solvents : II. Visualization of surface layers of steric stabilizer on dispersion-polymerized and precipitated polystyrene latex particles by transmission electron microscopy. Journal of Colloid and Interface Science 138, 170-181, 1990.
58 A. J. Paine, J. McNulty. Uniform polymer particles by dispersion polymerization in alcohol - comment. Journal of Polymer Science Part A - Polymer Chemistry 28, 2569-2574, 1990.
59 Y. Y. Lu, M. S. E. El-Aasser, J. W. Vanderhoff. Dispersion polymerization of styrene in ethanol:Monomer partitioning behavior and locus of polymerization. Journal of Polymer Science 26, 1187-1203, 1988.
60 A. J. Paine. Dispersion polymerization of styrene in polar solvents : I. Grafting mechanism of stabilization by hydroxypropyl cellulose. Journal of Colloid and Interface Science 138, 157-169, 1990.
61 A. J. Paine. Dispersion polymerizaiton of styrene in polar-solvents. 4. Solvency contorl of particle-size from hydroxypropyl cellulose stabilized polymerizations. Journal of Polymer Science Part A - Polymer Chemistry 28, 2485-2500, 1990.
62 C. K. Ober, F. van Grunsven, M. McGrath, M. L. Hair. Partitioning of monomer during dispersion polymerisation. Colloids and Surfaces 21, 347-354, 1986.
63 R. K. E. P. Ali Tuncel, scedil, kin. Monosize polystyrene microbeads by dispersion polymerization. Journal of Applied Polymer Science 50, 303-319, 1993.
64 M. Okubo, K. Ikegami, Y. Yamamoto. Studies on suspension and emulsion. 106. Preparation of micron-size monodisperse polymer microspheres having chloromethyl group. Colloid and Polymer Science 267, 193-200, 1989.
65 M. Okubo, Y. Murakami, T. Fujiwara. Formation mechanism of anomalous 'golf ball-like' composite polymer particles by seeded emulsion polymerization. Colloid and Polymer Science 274, 520-524, 1996.
66 M. Okubo, T. Fujibayashi, A. Terada. Synthesis of micron-sized, monodisperse polymer particles of disc-like and polyhedral shapes by seeded dispersion polymerization. Colloid and Polymer Science 283, 793-798, 2005. 10.1007/s00396-004-1210-4
67 T. Fujibayashi, M. Okubo. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization. Langmuir 23, 7958-7962, 2007. 10.1021/la7007842
68 Y. Yoshioka, K. Asao. Preparation of pie-shaped and rugged aromatic polyamide particles. Macromolecular Reaction Engineering 2, 407-413, 2008. 10.1002/mren.200800012
69 M. Okubo, T. Miya, H. Minami, R. Takekoh. Morphology of micron-sized, monodisperse, nonspherical polystyrene/poly(n-butyl methacrylate) composite particles produced by seeded dispersion polymerization. Journal of Applied Polymer Science 83, 2013-2021, 2002. 10.1002/app.10158
70 D. N. Wang, V. L. Dimonie, E. D. Sudol, M. S. El-Aasser. Seeded dispersion polymerization. Journal of Applied Polymer Science 84, 2710-2720, 2002. 10.1002/app.10593
71 M. Okubo, T. Fujibayashi, M. Yamada, H. Minami. Micron-sized, monodisperse, snowman/confetti-shaped polymer particles by seeded dispersion polymerization. Colloid and Polymer Science 283, 1041-1045, 2005. 10.1007/s00396-004-1240-y
72 K. Takahashi, K. Nagai. Preparation of reactive polymeric microspheres by seeded copolymerization using a polymerizable surfactant bearing an active ester group. Polymer 37, 1257-1266, 1996.
73 M. Okubo, J. Izumi, T. Hosotani, T. Yamashita. Production of micron sized monodispersed core/shell polymethyl methacrylate polystyrene particles by seeded dispersion polymerization. Colloid and Polymer Science 275, 797-801, 1997.
74 A. Bucsi, J. Forcada, S. Gibanel, V. Heroguez, M. Fontanille, Y. Gnanou. Monodisperse polystyrene latex particles functionalized by the macromonomer technique. Macromolecules 31, 2087-2097, 1998.
75 M. Okubo, J. Izumi. Synthesis of micron-sized monodispersed, core-shell composite polymer particles by seeded dispersion polymerization. Colloids and Surfaces A - Physicochemical and Engineering Aspects 153, 297-304, 1999.
76 M. Okubo, J. Izumi. Synthesis of micron-sized monodispersed, core-shell composite polymer particles by seeded dispersion polymerization (vol 153, pg 297, 1999). Colloids and Surfaces A - Physicochemical and Engineering Aspects 160, 321-321, 1999.
77 M. Okubo, J. Izumi, R. Takekoh. Production of micron-sized monodispersed core/shell composite polymer particles by seeded dispersion polymerization. Colloid and Polymer Science 277, 875-880, 1999.
78 M. Okubo, H. Minami, S. Fujii, T. Mukai. Production of core/shell polystyrene/poly(3,5-xylidine) composite particles by chemical oxidative seeded dispersion polymerization. Colloid and Polymer Science 277, 895-899, 1999.
79 K. R. Meyer. An abnormal particle formation phase in emulsion polymerization of SBR. Angewandte Makromolekulare Chemie 39, 167-174, 1974.
80 S. Lee, A. Rudin. The mechanism of core shell inversion in 2-stage latexes. Journal of Polymer Science Part A - Polymer Chemistry 30, 865-871, 1992.
81 C. C. Wang, J. F. Kuo, C. Y. Chen. Emulsion polymerization of butyl acrylate induced by sodium lauryl sulfate hydroxymethane sulfinate. Angewandte Makromolekulare Chemie 231, 15-24, 1995.
82 C. C. Wang, N. S. Yu, C. Y. Chen, J. F. Kuo. Kinetic study of the mini-emulsion polymerization of styrene. Polymer 37, 2509-2516, 1996.
83 C. C. Wang, J. F. Kuo, C. Y. Chen. Polymerization of styrene initiated by a novel initiator sodium formaldehyde sulfoxylate and sodium lauryl sulfate. European Polymer Journal 36, 965-974, 2000.
84 C. Y. Chen. Stability constants of polymer-bound iminodiacetate-type chelating agents with some transition-metal ions. Journal of Applied Polymer Science 86, 1986-1994, 2002. 10.1002/app.11182
85 C. C. Wang, C. Y. Chen, C. Y. Chang. Synthesis of chelating resins with iminodiacetic acid and its wastewater treatment application. Journal of Applied Polymer Science 84, 1353-1362, 2002. 10.1002/app.10243
86 C. Y. Chen. Stability constants of water-soluble and latex types of chelating polymers containing iminodiacetic acid with some transition-metal ions. European Polymer Journal 39, 991-1000, 2003. 10.1016/s0014-3057(02)00306-3
87 S. D. Li, C. C. Wang, C. Y. Chen. Preparation and characterization of a novel bipolar membrane by plasma-induced polymerization. Journal of Membrane Science 318, 429-434, 2008. 10.1016/j.memsci.2008.03.016
88 S. D. Li, C. C. Wang, C. Y. Chen. Water electrolysis for H-2 production using a novel bipolar membrane in low salt concentration. Journal of Membrane Science 330, 334-340, 2009. 10.1016/j.memsci.2009.01.015
89 C. W. Chen, C. Y. Chen, Y. H. Huang. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH4 solution. International Journal of Hydrogen Energy 34, 2164-2173, 2009. 10.1016/j.ijhydene.2008.12.077
90 W. H. Hou, C. Y. Chen, C. C. Wang. The environment of lithium ions and conductivity of comb-like polymer electrolyte with a chelating functional group. Polymer 44, 2983-2991, 2003. 10.1016/s0032-3861(03)00135-6
91 W. H. Hou, C. Y. Chen, C. C. Wang, Y. H. Huang. The effect of different lithium salts on conductivity of comb-like polymer electrolyte with chelating functional group. Electrochimica Acta 48, 679-690, 2003.
92 W. H. Hou, C. Y. Chen, C. C. Wang. Conductivity, DSC, and solid-state NMR studies of comb-like polymer electrolyte with a chelating functional group. Solid State Ionics 166, 397-405, 2004. 10.1016/j.ssi.2003.09.021
93 Y. H. Liang, C. C. Wang, C. Y. Chen. The conductivity and characterization of the plasticized polymer electrolyte based on the P(AN-co-GMA-IDA) copolymer with chelating group. Journal of Power Sources 148, 55-65, 2005. 10.1016/j.jpowsour.2005.04.034
94 Y. H. Liang, C. C. Wang, C. Y. Chen. The conductivity and characterization of the plasticized polymer electrolyte based on the P(AN-co-GMA-IDA) copolymer with chelating group (II): The effect of free ion in the plasticized polymer electrolyte. Electrochimica Acta 52, 527-537, 2006. 10.1016/j.electacta.2006.05.057
95 Y. H. Liang, C. Y. Hung, C. C. Wang, C. Y. Chen. Enhanced conductivity of plasticized polymer electrolytes containing chelating groups. Journal of Power Sources 188, 261-267, 2009. 10.1016/j.jpowsour.2008.11.101
96 C. Y. Chen. Formation of silver nanoparticles on a chelating copolymer film containing iminodiacetic acid. Thin Solid Films 484, 68-72, 2005. 10.1016/j.tsf.2005.02.027
97 Y. C. Chu, C. C. Wang, C. Y. Chen. Synthesis of luminescent and rodlike CdS nanocrystals dispersed in polymer templates. Nanotechnology 16, 58-64, 2005. 10.1088/0957-4484/16/1/013
98 Y. C. Chu, C. C. Wang, C. Y. Chen. A new approach to hybrid CdS nanoparticles in poly(BA-co-GMA-co-GMA-IDA) copolymer membranes. Journal of Membrane Science 247, 201-209, 2005. 10.1016/j.memsci.2004.09.020
99 Y. C. Chu, C. C. Wang, Y. H. Huang, C. Y. Chen. Preparation and characterization of luminescent CdS nanoparticles immobilized on poly(St-co-GMA-IDA) polymer microspheres. Nanotechnology 16, 376-385, 2005. 10.1088/0957-4484/16/4/008
100 C. H. Tseng, C. C. Wang, C. Y. Chen. Modification of polypropylene fibers by plasma and preparation of hybrid luminescent and rodlike CdS nanocrystals/polypropylene fibers. Journal of Nanoscience and Nanotechnology 6, 3897-3903, 2006. 10.1166/jnn.2006.658
101 C. H. Tseng, C. C. Wang, C. Y. Chen. Polypropylene fibers modified by plasma treatment for preparation of Ag nanoparticles. Journal of Physical Chemistry B 110, 4020-4029, 2006.
102 C. H. Tseng, C. C. Wang, C. Y. Chen. Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals. Nanotechnology 17, 5602-5612, 2006. 10.1088/0957-4484/17/22/013
103 S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, M. T. Kelly, P. J. Petillo, M. Binder. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources 85, 186-189, 2000.
104 Y. Kojima, T. Haga. Recycling process of sodium metaborate to sodium borohydride. International Journal of Hydrogen Energy 28, 989-993, 2003.
105 E. H. Park, S. U. Jeong, U. H. Jung, S. H. Kim, J. Lee, S. W. Nam, T. H. Lim, Y. J. Park, Y. H. Yu. Recycling of sodium metaborate to borax. International Journal of Hydrogen Energy 32, 2982-2987, 2007. 10.1016/j.ijhydene.2007.03.029
106 H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hockstra, E. K. Hyde. Journal of the American Chemical Society 75, 215-219, 1953.
107 H. C. Brown, C. A. Brown. New, highly active metal catalysts for the hydrolysis of borohydride. Journal of the American Chemical Society 84, 1962.
108 Z. T. Xia, S. H. Chan. Feasibility study of hydrogen generation from sodium borohydride solution for micro fuel cell applications. Journal of Power Sources 152, 46-49, 2005.
109 B. S. Richardson, J. F. Birdwell, F. G. Pin, J. F. Jansen, R. F. Lind. Sodium borohydride based hybrid power system. Journal of Power Sources 145, 21-29, 2005.
110 P. Krishnan, T. H. Yang, W. Y. Lee, C. S. Kim. PtRu-LiCoO2 - an efficient catalyst for hydrogen generation from sodium borohydride solutions. Journal of Power Sources 143, 17-23, 2005.
111 S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, N. C. Spencer, M. T. Kelly, P. J. Petillo, M. Binder. A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. International Journal of Hydrogen Energy 25, 969-975, 2000.
112 J. H. Kim, H. Lee, S. C. Han, H. S. Kim, M. S. Song, J. Y. Lee. Production of hydrogen from sodium borohydride in alkaline solution: development of catalyst with high performance. International Journal of Hydrogen Energy 29, 263-267, 2004.
113 C. M. Kaufman, B. Sen. Hydrogen generation by hydrolysis of sodium tetrahydroborate - effects of acids and transition-metals and their salts. Journal of the Chemical Society - Dalton Transactions, 307-313, 1985.
114 S. U. Jeong, E. A. Cho, S. W. Nam, I. H. Oh, U. H. Jung, S. H. Kim. Effect of preparation method on Co-B catalytic activity for hydrogen generation from alkali NaBH4 solution. International Journal of Hydrogen Energy 32, 1749-1754, 2007. 10.1016/j.ijhydene.2006.11.036
115 J. Y. Liang, Y. L. Li, Y. Q. Huang, J. Y. Yang, H. L. Tang, Z. D. Wei, P. K. Shen. Sodium borohydride hydrolysis on highly efficient Co-B/Pd catalysts. International Journal of Hydrogen Energy 33, 4048-4054, 2008. 10.1016/j.ijhydene.2008.05.082
116 H. B. Dai, Y. Liang, P. Wang, X. D. Yao, T. Rufford, M. Lu, H. M. Cheng. High-performance cobalt-tungsten-boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution. International Journal of Hydrogen Energy 33, 4405-4412, 2008. 10.1016/j.ijhydene.2008.05.080
117 Y. Kojima, K. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, H. Hayashi. Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy 27, 1029-1034, 2002.
118 Y. Kojima, Y. Kawai, H. Nakanishi, S. Matsumoto. Compressed hydrogen generation using chemical hydride. Journal of Power Sources 135, 36-41, 2004.
119 Y. Kojima, K. Suzuki, K. Fukumoto, Y. Kawai, M. Kimbara, H. Nakanishi, S. Matsumoto. Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources 125, 22-26, 2004.
120 C. Wu, H. M. Zhang, B. L. Yi. Hydrogen generation from catalytic hydrolysis of sodium borohydride for proton exchange membrane fuel cells. Catalysis Today 93-95, 477-483, 2004.
121 H. Dong, H. X. Yang, X. P. Ai, C. S. Cha. Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst. International Journal of Hydrogen Energy 28, 1095-1100, 2003.
122 A. Pinto, D. S. Falcao, R. A. Silva, C. M. Rangel. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors. International Journal of Hydrogen Energy 31, 1341-1347, 2006.
123 N. Patel, B. Patton, C. Zanchetta, R. Fernandes, G. Guella, A. Kale, A. Miotello. Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride. International Journal of Hydrogen Energy 33, 287-292, 2008. 10.1016/j.ijhydene.2007.07.018
124 J. H. Park, P. Shakkthivel, H. J. Kim, M. K. Han, J. H. Jang, Y. R. Kim, H. S. Kim, Y. G. Shul. Investigation of metal alloy catalyst for hydrogen release from sodium borohydride for polymer electrolyte membrane fuel cell application. International Journal of Hydrogen Energy 33, 1845-1852, 2008. 10.1016/j.ijhydene.2008.01.003
125 O. Metin, S. Ozkar. Hydrogen generation from the hydrolysis of sodium borohydride by using water dispersible, hydrogenphosphate-stabilized nickel(0) nanoclusters as catalyst. International Journal of Hydrogen Energy 32, 1707-1715, 2007. 10.1016/j.ijhydene.2006.11.025
126 S. Ozkar, R. G. Finke. Nanocluster formation and stabilization fundamental studies: Ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria. Journal of the American Chemical Society 124, 5796-5810, 2002.
127 J. D. Aiken, R. G. Finke. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. Journal of Molecular Catalysis A - Chemical 145, 1-44, 1999.
128 S. J. Shuttleworth, S. M. Allin, P. K. Sharma. Functionalised polymers: Recent developments and new applications in synthetic organic chemistry. Synthesis - Stuttgart, 1217-1239, 1997.
129 林志龍, 碩士論文. 國立成功大學, 台南, 2004.
130 邱宗輝, 碩士論文. 國立成功大學, 台南, 2005.
131 C. W. Chen, C. Y. Chen. Preparation of monodisperse polystyrene microspheres: effect of reaction parameters on particle formation, and optical performances of its diffusive agent application. Colloid and Polymer Science 287, 1377-1389, 2009. 10.1007/s00396-009-2098-9
132 C. W. Chen, C. Y. Chen, C. L. Lin. Preparation of monodisperse functional poly(methyl methacrylate) microspheres: Effect of reaction parameters on particle formation, and optical performances of its diffusive agent application. Journal of Polymer Research, 10.1007/s00396-010-2183-0
133 C. W. Chen, C. Y. Chen, Z. H. Cioul. Preparation of monodisperse functional poly(styrene-co-acrylamidoxime) microsphere with chelating amidoxime group. Colloid and Polymer Science 288, 665-672, 2010. 10.1007/s00396-010-2183-0
134 C. W. Chen, C. Y. Chen. Preparation of monodisperse polystyrene microspheres and optical performance of its diffusive-agent application. Journal of the Society for Information Display 15, 844-851, 2007.
135 C. K. Ober, M. L. Hair. The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. Journal of Polymer Science Part A - Polymer Chemistry 25, 1395-1407, 1987.
136 Y. Chen, H. W. Yang. Hydroxypropyl cellulose (HPC)-stabilized dispersion polymerization of styrene in polar-solvents - effect of reaction parameters. Journal of Polymer Science Part a-Polymer Chemistry 30, 2765-2772, 1992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-01-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-01-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw