進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1312201921201700
論文名稱(中文) 長時間極低頻電磁場對單一乳腺癌細胞之電性分析
論文名稱(英文) Long-term Electrical Analysis of Single Breast Cancer Cell Affected by Extremely-Low Frequency Electromagnetic Field
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 108
學期 1
出版年 108
研究生(中文) 劉展邑
研究生(英文) Chan-Yi Liu
學號 N26060208
學位類別 碩士
語文別 英文
論文頁數 64頁
口試委員 指導教授-張凌昇
口試委員-王明浩
口試委員-陳俊宏
中文關鍵字 極低頻電磁場  三維電極  阻抗量測  等效電路  細胞電導率以及電容率 
英文關鍵字 extremely-low frequency electromagnetic field  three-dimensional (3D) microelectrode  long-term impedance measurement  equivalent circuit  cell conductivity and permittivity 
學科別分類
中文摘要 癌症又為惡性腫瘤,指的是細胞不正常增生,且這些增生的細胞可能侵犯身體的其他部分。為了尋找治癒癌症的方法,除了醫學方面,生醫電子的領域也致力於研究細胞的電特性。近年來,為了模擬細胞在體內的環境,許多研究傾向於使用三維環境來培養和量測細胞特性。然而,許多研究著重於三維環境的建構或者添加生化試劑的細胞圖像觀察,量測的部分並沒有進行深入的分析。然而,細胞電特性可以提供研究膜和細胞質變化所需的信息。無需複雜的化學生化檢測,只需提出等效電路模型及推導。
本研究製作了了結合微電極及PDMS(Polydimethylsiloxane)模型之三維培養及量測晶片。並額外對細胞施加不同強度的極低頻電磁場(EMF)進行阻抗的比較。在經過十二小時左右的長時間阻抗量測,MDA-MB-231細胞經歷了細胞捕捉→細胞生長→細胞分裂之行為,這可以由阻抗趨勢變化來判斷。再者,在給予強電磁場的細胞阻抗明顯低於控制組的細胞阻抗趨勢,這可以用”強迫震動模型”以及細胞膜通透性進行解釋。此外,我們可以利用等效電路求出的細胞電阻和電容抗以及利用馬克士威混和理論求出細胞電導率以及電容率來驗證細胞膜通透性及鈣離子交換的變化。
英文摘要 Cancer, also known as a malignant tumor, refers to abnormal cell proliferation, and these proliferating cells may invade other parts of the body. In order to find a cure for cancer, in addition to medicine, the field of biomedical electronics is also devoted to studying the electrical properties of cells. This research also focuses on the cell environment. In recent years, in order to simulate the environment of cells in the body, many studies have tended to use three-dimensional environments to culture and measure cell characteristics. However, many studies have focused on the construction of three-dimensional environments or the observation of cell images with biochemical reagents. The measurement has not been analyzed in depth. However, cell electrical parameter provide the information of the variability of cells’ membrane and cytoplasmic. No complicated chemical and biochemical tests are required, only the equivalent circuit model and some derivations are proposed.
In this study, a biochip combined with microelectrode and PDMS (Polydimethylsiloxane) model for three-dimensional culture and measurement was fabricated. In the experiment, we applied a different intensity extremely-low frequency electromagnetic feld (EMF) to the cells of the experimental group for impedance comparison. After a long-term impedance measurement of about 12 hours, MDA-MB-231 cells undergo cell capture → cell growth → cell division, which can be judged by changes in impedance trends. Furthermore, the tendency of cell impedance to receive strong electromagnetic fields is significantly lower than that of the control group, which can be explained by the Forced Vibration Model and cell membrane permeability. In addition, we can use the equivalent circuit to determine the cell resistance and capacitive reactance and use the Maxwell’s mixture theory to determine the cell conductivity and permittivity to verify changes in cell membrane permeability and calcium ion exchange.
論文目次 CONTENT

CHAPTER 1 INTRODUCTION 1
1-1 Background and Motivation 1
1-1-1 Background 1
1-1-2 Motivation 2
1-2 Organization of thesis 3
CHAPTER 2 MATERIAL AND METHOD 4
2-1 Cell lines 4
2-2 Chip design and fabrication 4
2-2-1 Materials and technology 6
2-2-2 Introduction to microelectrodes fabrication 13
2-3 Combine chip with chamber 20
2-4 Extremely-low electromagnetic field generated device 23
CHAPTER 3 EXPERIMENTAL SETUP AND PROCESS 26
3-1 Experimental setup 27
3-1-1 Impedance measurement system 27
3-1-2 Calibration 29
3-1-3 Single cell trapping and culture pretreatment 31
3-2 Experimental protocol 35
CHAPTER 4 RESULTS AND DISCUSSIONS 37
4-1 Cell capture result 37
4-2 Long-term Impedance measurement 39
4-3 Equivalent circuit model 42
4-3-1 Equivalent circuit model without cell 42
4-3-2 Equivalent circuit model of single-cell 44
4-3-3 Derivation of cell dielectric constant and conductivity 47
4-3-4 Calculation and analysis of cell permittivity and conductivity 52
4-4 Discussion on the relationship between the mechanism of electromagnetic field and the cell parameter 53
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 57
參考文獻 [1] Yu-Cheng Chou, “Miniaturized Cell Culture System,” National Cheng Kung University, July 2016
[2] Guan, Zhichao, et al. "Facile and rapid generation of large-scale microcollagen gel array for long-term single-cell 3D culture and cell proliferation heterogeneity analysis." Analytical chemistry 86.5: 2789-2797, 2014.
[3] Chen, Nai-Chin, et al. "Single-cell trapping and impedance measurement utilizing dielectrophoresis in a parallel-plate microfluidic device." Sensors and Actuators B: Chemical 190: 570-577 ,2014.
[4] Wang, Lei, et al. "Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip." Biosensors and Bioelectronics 25.5: 990-995, 2010.
[5] Aditya Parekh, Debanjan Das, Subhayan Das, Santanu Dhara, & Soumen Das, “Bio-impedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells” , Scientific Reports 8, Article number: 783, 2018.
[6] Tang, Jing-Yau, et al. "Effects of extremely low-frequency electromagnetic fields on B16F10 cancer cells." Electromagnetic biology and medicine: 1-9. ,2019

[7] Cell line profile of MDA-MB-231
https://www.atcc.org/products/all/HTB-26.aspx
[8] Mabry, Kelly M., Samuel Z. Payne, and Kristi S. Anseth. "Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype." Biomaterials 74: 31-41 , (2016).
[9] Nguyen, Tien Anh, Tsung-I. Yin, and Gerald Urban. "A cell impedance sensor chip for cancer cells detection with single cell resolution." SENSORS, 2013 IEEE. IEEE, 2013.
[10] AZ-P4000 Thick Film Photoresist, http://www.microchemicals.com/micro/AZ%20P4000%20Phototresist.pdf
[11] 〖NANO〗^TW SU-8 Negative Tone Photoresist Formulations 2-25,
http://www.microchem.com/pdf/SU8_2-25.pdf]
[12] Schlesinger, Mordechay, and Milan Paunovic, eds. Modern electroplating. Vol. 55. John Wiley & Sons, 2011.
[13] Zhu, Di, and Y. B. Zeng. "Micro electroforming of high-aspect-ratio metallic microstructures by using a movable mask." CIRP annals 57.1 (2008): 227-230, (2008).
[14] Ziolkowska, Karina, et al. "PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage." Sensors and Actuators B: Chemical 145.1: 533-542, (2010).
[15] Ming-Wei Jian, “Effects of Schumann Wave on Voltage-gated Calcium Channels of B16F10 Cancer Cells. ” ,National Cheng Kung University, July 2018.
[16] Nikon TS100 inverted microscope
https://www.microscopyu.com/museum/eclipse-ts100
[17] Poly-L-lysine,
http://www.sigmaaldrich.com/technical-documents/articles/biofiles/poly-lysine.html
[18] Cell cycle
https://en.wikipedia.org/wiki/Cell_cycle
[19] Chen, Guo, and Xing Ming Deng. "Cell Synchronization by Double Thymidine Block." Bio-protocol 8.17 ,(2018).
[20] Wang, Min-Haw, and Ling-Sheng Jang. "A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations." Biosensors and bioelectronics 24.9: 2830-2835, (2009).
[21] Huang, Xiaoqiu, et al. "Simulation of microelectrode impedance changes due to cell growth." IEEE Sensors Journal 4.5: 576-583, (2004).
[22] Tsai, Sung‐Lin, et al. "Analytical and numerical modeling methods for electrochemical impedance analysis of single cells on coplanar electrodes." Electroanalysis 26.2: 389-398, (2014).
[23] Das, Debanjan, et al. "Evaluation of single cell electrical parameters from bioimpedance of a cell suspension." RSC Advances 4.35: 18178-18185, (2014).
[24] Buckner, C. A., Buckner, A. L., Koren, S. A., Persinger, M. A., & Lafrenie, R. M.. “Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.” PLoS One, 10(4), e0124136, (2015).
[25] Elledge, S. J. “Cell cycle checkpoints: preventing an identity crisis.” Science, 274(5293), 1664-1672, (1996)
[26] Yam, C. H., Fung, T. K., & Poon, R. Y. C. “Cyclin A in cell cycle control and cancer. Cellular and Molecular Life Sciences CMLS” , 59(8), 1317-1326, (2002).
[27] Resende, R. R., Adhikari, A., Da Costa, J. L., Lorencon, E., Ladeira, M. S., Guatimosim, S., ... & Ladeira, L. O. “Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research”, 1803(2), 246-260, (2010).
[28] Maqoud, F., Curci, A., Scala, R., Pannunzio, A., Campanella, F., Coluccia, M., ... & Tricarico, D. “Cell Cycle Regulation by Ca2+-Activated K+ (BK) Channels Modulators in SH-SY5Y Neuroblastoma Cells.” International journal of molecular sciences, 19(8), 2442, (2018).
[29] Sun, Tao, and Hywel Morgan. "Single-cell microfluidic impedance cytometry: a review." Microfluidics and Nanofluidics 8.4: 423-443, (2010).
[30] Hanai, Tetsuya, et al. "Dielectric Properties of Emulsions.(II): Electrical Conductivities of O/W Emulsions." ,(1961).
[31] Foster, Kenneth R., and Herman P. Schwan. "Dielectric properties of tissues." Handbook of biological effects of electromagnetic fields 2: 25-102, (1995).
[32] Bawin, Susan M., and W. Ross Adey. "Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency." Proceedings of the National Academy of Sciences 73.6: 1999-2003, (1976).
[33] Gobba, Fabriziomaria, Davide Malagoli, and Enzo Ottaviani. "Effects of 50 Hz magnetic fields on fMLP‐induced shape changes in invertebrate immunocytes: The role of calcium ion channels." Bioelectromagnetics 24.4: 277-282, (2003).
[34] Liboff, A. R., et al. "Calmodulin‐dependent cyclic nucleotide phosphodiesterase activity is altered by 20 μT magnetostatic fields." Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 24.1: 32-38, (2003).
[35] Panagopoulos, Dimitris J., Andreas Karabarbounis, and Lukas H. Margaritis. "Mechanism for action of electromagnetic fields on cells." Biochemical and biophysical research communications 298.1: 95-102, (2002).
[36] Santini, M. T., et al. "Extremely low frequency (ELF) magnetic fields and apoptosis: a review." International Journal of Radiation Biology 81.1: 1-11, (2005).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw