進階搜尋


 
系統識別號 U0026-1310201703132100
論文名稱(中文) 複雜性氧化物介面應變引致的物理性質
論文名稱(英文) Interface Strain-Induced Physical Properties in Complex Oxides
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 106
學期 1
出版年 106
研究生(中文) 黃彥欽
研究生(英文) Yen-Chin Huang
學號 L28991063
學位類別 博士
語文別 英文
論文頁數 135頁
口試委員 指導教授-陳宜君
召集委員-黃榮俊
口試委員-吳忠霖
口試委員-邱雅萍
口試委員-朱英豪
口試委員-許文東
中文關鍵字 介面應變  混相鐵酸鉍  鐵電保留  相變  鈷鐵氧體  八面體陽離子有序性 
英文關鍵字 Interface strain  Mixed-phase BiFeO3  Ferroelectric retention  Phase transition  CoFe2O4  Octahedral-site ordering 
學科別分類
中文摘要 薄膜成長技術的提升使的原子可以整齊的排列,因此介面的效應也變得明顯,介面處出現的特別性質或藉由介面可以去調控與其相接材料的性質都使介面成為重要的研究對象,在眾多應用於介面特性研究的材料中,複雜性氧化物因為具有多元的性質和應用潛力而備受關注。在這個研究論文中,我們將研究分為三個部分來探討介面應變在複雜性氧化物中引致的物理性質,第一部分我們研究混和相鐵酸鉍中類長方晶鐵酸鉍(T-BFO)和類菱長晶鐵酸鉍(R-BFO)交錯出現的週期性相邊界下的鐵電保留特性,在相邊界上會發現具有明顯比其他鐵酸鉍系統更長的鐵電保留時間,其原因來自於存在應變梯度的相邊界上會產生彈性能低點,因此可以限制鐵電域壁的移動,另外,還發現到若能在週期性相邊界區域下製造出對稱的雙位能低點,更能有效延長鐵電保留時間。
在第二個部分中,我們藉由原子力顯微鏡(AFM)、X光繞射和拉曼光譜來研究介面應變影響的低溫結構和磁性相變,因類長方晶鐵酸鉍(T-BFO)和類菱長晶鐵酸鉍(R-BFO)彼此的相轉換位障低,可藉由外加電壓來調控兩者比例,因此我們將拉曼光譜結合原子力顯微鏡來幫助我們有效地區分出T-BFO和R-BFO,在變溫X光繞射下觀察到T-BFO和R-BFO分別在225 K和150 K具有同構相變,且結構相變與磁有序的變化透過介面具有很強的耦合,此外,由於自旋晶格交互作用,混相鐵酸鉍的低溫相組成會受到外加磁場降溫過程影響,我們提供了在這種高應變系統下調變聲子行為的新方法。
前面兩個部分的研究都專注在同一種材料的相邊界上,在最後一部分,為了瞭解不同材料的異質接面所造成的影響,我們選擇了磊晶成長的鈷鐵氧體(CoFe2O4, CFO)薄膜和鈷鐵氧體-釕酸鍶(CoFe2O4-SrRuO3, CFO-SRO)垂直成長奈米複合薄膜來進行研究,在變角度的偏振拉曼光譜強度變化下可以明顯發現到CFO薄膜和奈米結構CFO具有不同的晶體對稱性,根據拉曼選擇定則和第一原理計算結果搭配比對,我們可以得知,在應力幾乎釋放的CFO薄膜(c/a=1)其八面體上陽離子的有序排列會造成Imma的對稱性,而受應力的奈米結構CFO(c/a>1)則呈現P4122的對稱結構,我們可以明顯看出介面應變在鈷鐵氧體中扮演著控制八面體上陽離子有序性的角色。
英文摘要 The interfaces become more important with the development of thin film growth engineering. Besides the observation of intriguing properties at the interface, the properties of the adjacent material can be tuned across the interface. Among the lots of materials used in interfacial studies, the complex oxides attract extensive attention due to rich properties and potential applications. In this dissertation, we divide the research into three parts to investigate the interface strain-induced physical properties in complex oxides. In the first part, we studied the ferroelectric retention behavior at the periodic heterointerfaces of tetragonal-like BiFeO3 (T-BFO)/rhombohedral-like BiFeO3 (R-BFO) in mixed-phase BFO film. The enhancement of ferroelectric retention was observed, and the retention time is longer than in the single-phase BFO. Phase field simulation shows that the T/R mixed-phase region has lower elastic energy density than the T-BFO matrix, which explains the experimental observation of better ferroelectric retention in the mixed-phase region. Tracking the dynamic domain relaxation process reveals that T/R phase boundaries act as the pinning centers for the domain wall motion. By taking the advantage of the in-plane periodic potential distribution in the mixed-phase region, we demonstrated a simple way to create stable reversed domains with significantly enhanced long retention.
In the second part, interface strain-affected structural and magnetic transformations at low temperature in mixed-phase BFO were investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), and Raman spectroscopy. We combined Raman spectroscopy and AFM to separate the Raman contribution of T-BFO and R-BFO by using the characteristic of electric field tunable T/R ratio. Based on temperature-dependent XRD and resolved Raman spectra, we observed two isostructural transitions at around 225 K and 150 K, and they are strongly correlated with the magnetic ordering in the mixed-phase BFO film. Meanwhile, the transitions of T-BFO and R-BFO couple together by the mediation of interfacial strain. Moreover, through the effective spin-lattice coupling, the evolution of the T/R polymorph is changed by the magnetic cooling process at low temperatures. We provide a pathway to modulate phonon behaviors by magnetic fields in a highly strained system.
In the last part, in order to know the effects caused by different kinds of heterointerfaces, we studied the layer-by-layer CoFe2O4 (CFO) film and CoFe2O4-SrRuO3 (CFO-SRO) vertically aligned nanocomposite film. XRD patterns show a strain-relaxed state in the layer-by-layer CFO film, while the interfacial strain results in distorted structures in CFO-SRO film. In addition, the angle-resolved polarized Raman spectroscopy indicates there are different short-range octahedral-site orderings in relaxed and distorted CFO structures. With the help of Raman polarization selection rules and theoretical results calculated by the first principle, the relaxed CFO structure (c/a=1) with Imma symmetry and the distorted CFO (c/a>1) in CFO-SRO nanocomposite film with P4122 symmetry are obtained. The interfacial strain plays an important role to manipulate the cation distribution in spinel ferrite.
論文目次 摘要 .......... I
Abstract .......... III
誌謝(Acknowledgement) .......... V
Contents......... VII
List of Figures .......... X
List of Tables .......... XX
Chapter 1 Introduction.......... 1
1-1 Ferroelectric Retention .......... 4
1-2 Intriguing Properties at the Interface Boundary of Mixed-Phase BiFeO3 ........... 14
1-3 Cation Orderings and Corresponding Properties in Spinel Ferrites .......... 22
Chapter 2 Theoretical Aspects of Instrumentation.......... 31
2-1 Scanning Probe Microscopy.......... 31
2-1.1 Introduction and History of Scanning Probe Microscopy.......... 31
2-1.2 Basics of Atomic Force Microscopy (AFM) .......... 33
2-1.3 The Framework of AFM.......... 35
2-1.4 Piezoresponse Force Microscopy (PFM) .......... 42
2-2 Raman Spectroscopy.......... 48
2-2.1 Historical Background of Raman Spectroscopy.......... 48
2-2.2 Origin of Raman Spectra .......... 48
2-2.3 Why Were Only Phonons near the Γ Point Measured by Raman Spectroscopy?.......... 54
2-2.4 Selection Rules .......... 55
2-2.5 Partial Depolarization by Microscope Objectives .......... 57
Chapter 3 Ferroelectric Retention Enhancement by Periodic Phase Boundary.......... 62
3-1 Motivation.......... 62
3-2 Experimental Section.......... 62
3-3 Region-Dependent Relaxation Behaviors of Switched Domains.......... 63
3-4 Relaxation Processes of Switched Domains in the Mixed-Phase Region .......... 65
3-5 Mechanism of the Long Ferroelectric Retention at Mixed-Phase Boundary .......... 68
3-6 How to Extend the Ferroelectric Retention in Mixed-Phase BiFeO3 .......... 71
Chapter 4 Magnetic-Structural Coupled Phase Transformations at Morphotropic Phase Boundary of BiFeO3.......... 75
4-1 Motivation.......... 75
4-2 Experimental Section.......... 76
4-3 Phase Separation by Raman Spectroscopy Combined with Atomic Force Microscopy .......... 76
4-4 Interfacial Strain-Mediated Structural Transitions in Mixed-Phase BiFeO3 below Room Temperature.......... 80
4-5 Spin-Lattice Coupling in Mixed-Phase BiFeO3.......... 83
4-6 Magnetic-Field Tunable Phonon Behaviors .......... 86
Chapter 5 Octahedral-Site Orderings in CoFe2O4 Films and CoFe2O4–SrRuO3 Vertically Aligned Nanocomposite Films .......... 89
5-1 Motivation.......... 89
5-2 Experimental Section.......... 89
5-3 CoFe2O4 Strained states in Epitaxial Films and Nanocomposite Films .......... 91
5-4 Polarized Raman Spectra of CoFe2O4 Epitaxial Films and CoFe2O4-SrRuO3 Nanocomposite Films .......... 94
5-5 Strained State-Mediated Short-Range Octahedral-site Ordering in CoFe2O4 .......... 97
Chapter 6 Conclusion .......... 109
References.......... 111
Publication List .......... 125
Appendix A.......... 129
Appendix B.......... 130
參考文獻 [1] P. Yu, Y. H. Chu and R. Ramesh, “Emergent phenomena at multiferroic heterointerfaces,” Philos. Trans. Roy. Soc. A 370, 4856 (2012).
[2] W. Zhang, A. Chen, Z. Bi, Q. Jia, J. L. MacManus-Driscoll, and H.Wang, “Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control,” Curr. Opin. Solid State Mater. Sci. 18, 6 (2014).
[3] E. Y. Tsymbal and A. Gruverman, “Ferroelectric tunnel junctions: Beyond the barrier,” Nature materials 12, 602 (2013).
[4] F. Ambriz-Vargas, G. Kolhatkar, M. Broyer, A. Hadj-Youssef, R. Nouar, A. Sarkissian, R. Thomas, C. Gomez-Yáñez, M. A. Gauthier, and A. Ruediger, “A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction,” ACS Appl. Mater. Interfaces 9, 13262 (2017).
[5] Y. C. Chen, C. H. Ko, Y. C. Huang, J. C. Yang, and Y. H. Chu, “Domain relaxation dynamics in epitaxial BiFeO3 films: Role of surface charges,” J. Appl. Phys. 112, 052017 (2012).
[6] D. D. Fong, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, P. H. Fuoss, G. B. Stephenson, C. Thompson, D. M. Kim, K. J. Choi, C. B. Eom, I. Grinberg, and A. M. Rappe, “Stabilization of monodomain polarization in ultrathin PbTiO3 films,” Phys. Rev. Lett. 96, 127601 (2006).
[7] S. Zhong, S. P. Alpay, and J. V. Mantese, “Compositional symmetry breaking in ferroelectric bilayers,” Appl. Phys. Lett. 87, 102902 (2005).
[8] N. Sai, B. Meyer, and D. Vanderbilt, “Compositional inversion symmetry breaking in ferroelectric perovskites,” Phys. Rev. Lett. 84, 5636 (2000).
[9] S. J. Callori, J. Gabel, D. Su, J. Sinsheimer, M. V. Fernandez-Serra, and M. Dawber, “Ferroelectric PbTiO3/SrRuO3 superlattices with broken inversion symmetry,” Phys. Rev. Lett. 109, 067601 (2012).
[10] T. H. Kim, S. H. Baek, S. M. Yang, S. Y. Jang, D. Ortiz, T. K. Song, J.-S. Chung, C. B. Eom, T. W. Noh, and J.-G. Yoon, “Electric-field-controlled directional motion of ferroelectric domain walls in multiferroic BiFeO3 films,” Appl. Phys. Lett. 95, 262902 (2009).
[11] A. N. Morozovska, E. A. Eliseev, G. S. Svechnikov, and S. V. Kalinin, “Mesoscopic mechanism of the domain wall interaction with elastic defects in uniaxial ferroelectrics,” J. Appl. Phys. 113, 187203 (2013).
[12] H. H. Wu, J. Wang, S. G. Cao, L. Q. Chen, and T. Y. Zhang, “Micro-/macro-responses of a ferroelectric single crystal with domain pinning and depinning by dislocations,” J. Appl. Phys. 114, 164108 (2013).
[13] P. Gao, C. T. Nelson, J. R. Jokisaari, S. H. Baek, C. W. Bark, Y. Zhang, E. Wang, D. G. Schlom, C. B. Eom, and X. Pan, “Revealing the role of defects in ferroelectric switching with atomic resolution,” Nature Commun. 2, 591 (2011).
[14] T. Rojac, M. Kosec, B. Budic, N. Setter, and D. Damjanovic, “Strong ferroelectric domain-wall pinning in BiFeO3 ceramics,” J. Appl. Phys. 108, 074107 (2010).
[15] L. Li, Y. Zhang, L. Xie, J. R. Jokisaari, C. Beekman, J. C. Yang, Y. H. Chu, H. M. Christen, and X. Pan, “Atomic-scale mechanisms of defect-induced retention failure in ferroelectrics,” Nano Lett., 17, 3556 (2017).
[16] G. A. Smolenskii and I. E. Chupis, “Ferroelectromagnets,” Sov. Phys. Usp. 25, 475 (1982).
[17] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,”Science 299, 1719 (2003).
[18] R. Ramesh and N. A. Spaldin, “Multiferroics: Progress and prospects in thin films,” Nature Mater. 6, 21 (2007).
[19] G. Catalan and J. F. Scott, “Physics and applications of bismuth ferrite,” Adv. Mater. 21, 2463 (2009).
[20] R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, “A strain-driven morphotropic phase boundary in BiFeO3,” Science 326, 977 (2009).
[21] I. C. Infante, S. Lisenkov, B. Dupé, M. Bibes, S. Fusil, E. Jacquet, G. Geneste, S. Petit, A. Courtial, J. Juraszek, L. Bellaiche, A. Barthélémy, and B. Dkhil, “Bridging multiferroic phase transitions by epitaxial strain in BiFeO3,” Phys. Rev. Lett. 105, 057601 (2010).
[22] D. Sando, A. Barthélémy, and M. Bibes, “BiFeO3 epitaxial thin films and devices: Past, present and future,” J. Phys.: Condens. Matter 26, 473201 (2014).
[23] D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S. V. Kalinin, A. P. Baddorf, and A. Gupta, “Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films,” Nano Lett. 10, 2555 (2010).
[24] B. Dupé, I. C. Infante, G. Geneste, P. E. Janolin, M. Bibes, A. Barthélémy, S. Lisenkov, L. Bellaiche, S. Ravy, and B. Dkhil, “Competing phases in BiFeO3 thin films under compressive epitaxial strain,” Phys. Rev. B 81, 144128 (2010).
[25] M. N. Iliev, M. V. Abrashev, D. Mazumdar, V. Shelke, and A. Gupta, “Polarized Raman spectroscopy of nearly tetragonal BiFeO3 thin films,” Phys. Rev. B 82, 014107 (2010).
[26] C. Beekman, W. Siemons, T. Z. Ward, M. Chi, J. Howe, M. D. Biegalski, N. Balke, P. Maksymovych, A. K. Farrar, J. B. Romero, P. Gao, X. Q. Pan, D. A. Tenne, and H. M. Christen, “Phase transitions, phase coexistence, and piezoelectric switching behavior in highly strained BiFeO3 films,” Adv. Mater. 25, 5561 (2013).
[27] R. Huang, H. C. Ding, W. I. Liang, Y. C. Gao, X. D. Tang, Q. He, C. G. Duan, Z. Q. Zhu, J. H. Chu, C. A. J. Fisher, T. Hirayama, Y. Ikuhara, and Y. H. Chu, “Atomic-scale visualization of polarization pinning and relaxation at coherent BiFeO3 /LaAlO3 interfaces,” Adv. Funct. Mater. 24, 793 (2014).
[28] O. Diéguez, O. E. González-Vázquez, J. C. Wojdeł, and J. Íñiguez, “First-principles predictions of low-energy phases of multiferroic BiFeO3,” Phys. Rev. B 83, 094105 (2011).
[29] F. Pailloux, M. Couillard, S. Fusil, F. Bruno, W. Saidi, V. Garcia, C. Carrétéro, E. Jacquet, M. Bibes, A. Barthélémy, G. A. Botton, and J. Pacaud, “Atomic structure and microstructures of supertetragonal multiferroic BiFeO3 thin films,” Phys. Rev. B 89, 104106 (2014).
[30] M. P. Cosgriff, P. Chen, S. S. Lee, H. J. Lee, L. Kuna, K. C. Pitike, L. Louis, W. D. Parker, H. Tajiri, S. M. Nakhmanson, J. Y. Jo, Z. H. Chen, L. Chen, and P. G. Evans, “Nanosecond phase transition dynamics in compressively strained epitaxial BiFeO3,” Adv. Electron. Mater. 2, 1500204 (2016).
[31] H. M. Christen, J. H. Nam, H. S. Kim, A. J. Hatt, and N. A. Spaldin, “Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films,” Phys. Rev. B 83, 144107 (2011).
[32] Q. He, Y. H. Chu, J. T. Heron, S. Y. Yang, W. I. Liang, C. Y. Kuo, H. J. Lin, P. Yu, C. W. Liang, R. J. Zeches, W. C. Kuo, J. Y. Juang, C. T. Chen, E. Arenholz, A. Scholl, and R. Ramesh, “Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics,” Nat. Commun. 2, 225 (2011).
[33] J. X. Zhang, B. Xiang, Q. He, J. Seidel, R. J. Zeches, P. Yu, S. Y. Yang, C. H. Wang, Y. H. Chu, L. W. Martin, A. M. Minor, and R. Ramesh, “Large field-induced strains in a lead-free piezoelectric material,” Nat. Nanotechnol. 6, 98 (2011).
[34] J. X. Zhang, R. J. Zeches, Q. He, Y. H. Chu, and R. Ramesh, “Nanoscale phase boundaries: A new twist to novel functionalities,” Nanoscale 4, 6196 (2012).
[35] K. Chu, B. K. Jang, J. H. Sung, Y. A. Shin, E. S. Lee, K. Song, J. H. Lee, C. S. Woo, S. J. Kim, S. Y. Choi, T. Y. Koo, Y. H. Kim, S. H. Oh, M. H. Jo, and C. H. Yang, “Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients,” Nat. Nanotechnol. 10, 972 (2015).
[36] Y. C. Chen, Q. He, F. N. Chu, Y. C. Huang, J. W. Chen, W. I. Liang, R. K. Vasudevan, V. Nagarajan, E. Arenholz, S. V. Kalinin, and Y. H. Chu, “Electrical control of multiferroic orderings in mixed-phase BiFeO3 films,” Adv. Mater. 24, 3070 (2012).
[37] Y. J. Li, J. J. Wang, J. C. Ye, X. X. Ke, G. Y. Gou, Y. Wei, F. Xue, J. Wang, C. S. Wang, R. C. Peng, X. L. Deng, Y. Yang, X. B. Ren, L. Q. Chen, C. W. Nan, and J. X. Zhang, “Mechanical switching of nanoscale multiferroic phase boundaries,” Adv. Funct. Mater. 25, 3405 (2015).
[38] F. Iwamoto, M. Seki, and H. Tabata, “Magnetic and electric properties of Ru-substituted CoFe2O4 thin films fabricated by pulsed laser deposition,” J. Appl. Phys. 112, 103901 (2012).
[39] D. Fritsch and C. Ederer, “Effect of epitaxial strain on the cation distribution in spinel ferrites CoFe2O4 and NiFe2O4: A density functional theory study,” Appl. Phys. Lett. 99, 081916 (2011).
[40] H. S. Mund, S. Tiwari, J. Sahariya, M. Itou, Y. Sakurai, and B. L. Ahuja, “Investigation of orbital magnetization in inverse spinel cobalt ferrite using magnetic Compton scattering,” J. Appl. Phys. 110, 073914 (2011).
[41] D. Fritsch and C. Ederer, “First-principle calculation of magnetoelastic coefficients and magnetostriction in spinel ferrites CoFe2O4 and NiFe2O4,” Phys. Rev. B 86, 014406 (2012).
[42] Y. H. Hou, Y. J. Zhao, Z. W. Liu, H. Y. Yu, X. C. Zhong, W. Q. Qiu, D. C. Zeng, and L. S. Wen, “Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4: A first-principle study,” J. Phys. D: Appl. Phys. 43, 445003 (2010).
[43] H. J. Liu, Y. Y. Liu, C. Y. Tsai, S. C. Liao, Y. J. Chen, H. J. Lin, C. H. Lai, W. F. Hsieh, J. Y. Li, C. T. Chen, Q. He, and Y. H. Chu, “Tuning the functionalities of a mesocrystal via structural coupling,” Sci. Rep. 5, 12073 (2015).
[44] V. G. Ivanov, M. V. Abrashev, M. N. Iliev, M. M. Gospodinov, J. Meen, and M. I. Aroyo, “Short-range B-site ordering in the inverse spinel ferrite NiFe2O4,” Phys. Rev. B 82, 024104 (2010).
[45] B. Voigtländer, Scanning probe microscopy: Atomic force microscopy and scanning tunneling microscopy, Springer, Berlin, 2015.
[46] G. Binnig and H. Rohrer, “In touch with atoms,” Rev. Mod. Phys. 71, S324 (1999).
[47] J. N. Israelachvili, Intermolecular and surface forces, Academic Press, London, 1992.
[48] A. Sikora, “Quantitative normal force measurements by means of atomic force microscopy. Towards the accurate and easy spring constant determination,” Nanosci. Nanometrol. 2, 8 (2016).
[49] Multimode 8 Instruction Manual, Bruker, 2010
[50] S. Kalinin and A. Gruverman, Scanning probe microscopy: electrical and electromechanical phenomena at the nanoscale, Springer, New York, 2007.
[51] K. Prume, A. Roelofs, T. Schmitz, B. Reichenberg, S. Tiedke, and R. Waser, “Compensation of the parasitic capacitance of a scanning force microscope cantilever used for measurements on ferroelectric capacitors of submicron size by means of finite element simulations,” Jpn. J. Appl. Phys., Part 1 41(11B), 7198 (2002).
[52] D. Sando, A. Barthélémy, and M. Bibes, “BiFeO3 epitaxial thin films and devices: Past, present and future,” J. Phys. Condens. Matter 26, 473201 (2014).
[53] U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment,” Rev. Sci. Instrum. 67, 3281 (1996).
[54] See https://en.wikipedia.org/wiki/Ferroelectricity (last accesed September 28, 2017).
[55] J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy, Academic Press, San Diego, CA 1994.
[56] E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach, John Wiley & Sons, New York, 2005.
[57] E. Kroumova, M. I. Aroyo, J. M. Perez Mato, A. Kirov, C. Capillas, S. Ivantchev and H. Wondratschek, “Bilbao Crystallographic Server: useful databases and tools for phase transitions studies,” Phase Transitions 76, 155 (2003).
[58] H. Morishita, Y. Hoshino, S. Higuchi, F. Kaneko, K. Tashiro, and M. Kobayashi, “Partial depolarization effect of high-numerical-aperture objectives on polarized microfocus Raman spectra of orthorhombic poly(oxymethylene) single crystal,” J. Raman Spectrosc. 31, 455 (2000).
[59] R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Modern Opt. 50, 1917 (2003).
[60] T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone, “Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films,” Phys. Rev. Lett. 89, 097601 (2002).
[61] Y. Kan, X. Lu, H. Bo, F. Huang, X. Wu, and J. Zhu, “Critical radii of ferroelectric domains for different decay processes in LiNbO3 crystals,” Appl. Phys. Lett. 91, 132902 (2007).
[62] J. W. Hong , W. Jo , D. C. Kim , S. M. Cho , H. J. Nam , H. M. Lee , and J. U. Bu, “Nanoscale investigation of domain retention in preferentially oriented PbZr0.53Ti0.47O3 thin films on Pt and on LaNiO3,” Appl. Phys. Lett. 75, 3183 (1999).
[63] C. S. Ganpule, V. Nagarajan, S. B. Ogale, A. L. Roytburd, E. D. Williams, and R. Ramesh, “Domain nucleation and relaxation kinetics in ferroelectric thin films,” Appl. Phys. Lett. 77, 3275 (2000).
[64] C. Blaser and P. Paruch, “Minimum domain size and stability in carbon nanotube-ferroelectric devices,” Appl. Phys. Lett. 101, 142906 (2012).
[65] A. R. Damodaran, C. W. Liang, Q. He, C. Y. Peng, L. Chang, Y. H. Chu, and L. W. Martin, “Nanoscale structure and mechanism for enhanced electromechanical response of highly strained BiFeO3 thin films,” Adv. Mater. 23, 3170 (2011).
[66] J. X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y. H. Chu, and R. Ramesh, “Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3,” Phys. Rev. Lett. 107, 147602 (2011).
[67] J. Zhou, M. Trassin, Q. He, N. Tamura, M. Kunz, C. Cheng, J. Zhang, W. I. Liang, J. Seidel, C. L. Hsin, and J. Wu, “Directed assembly of nano-scale phase variants in highly strained BiFeO3 thin films,” J. Appl. Phys. 112, 064102 (2012).
[68] Y. Y. Liu, R. K. Vasudevan, K. Pan, S. H. Xie, W.-I. Liang, A. Kumar, S. Jesse, Y.-C. Chen, Y.-H. Chu, V. Nagarajan, S. V. Kalinin, and J. Y. Li, “Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite,” Nanoscale 4, 3175 (2012).
[69] W. Ren, Y. Yang, O. Diéguez, J. Íñiguez, N. Choudhury, and L. Bellaiche, “Ferroelectric domains in multiferroic BiFeO3 films under epitaxial strains,” Phys. Rev. Lett. 110, 187601 (2013).
[70] T. K. Song, J. G. Yoon, and S. I. Kwun, “Microscopic polarization retention properties of ferroelectric Pb(Zr,Ti)O3 thin films,” Ferroelectrics 335, 61 (2006).
[71] D. S. Fu, K. Suzuki, K. Kato, and H. Suzuki, “Dynamics of nanoscale polarization backswitching in tetragonal lead zirconate titanate thin film,” Appl. Phys. Lett. 82, 2130 (2003).
[72] A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wuttig, R. Ramesh, O. Auciello, and T. Venkatesan, “Nanoscale imaging of domain dynamics and retention in ferroelectric thin films,” Appl. Phys. Lett. 71, 3492 (1997).
[73] H. R. Zeng, K. Shimamura, E. G. Villora, S. Takekawa, and K. Kitamura, “Domain growth kinetics and wall strain behavior in BaMgF4 ferroelectric crystal by piezoresponse force microscopy,” J. Appl. Phys. 101, 074109 (2007).
[74] A. Gruverman and M. Tanaka, “Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale,” J. Appl. Phys. 89, 1836 (2001).
[75] C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, and R. Ramesh, “Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films,” Phys. Rev. B 65, 014101 (2001).
[76] V. V. Shvartsman, A. L. Kholkin, M. Tyunina, and J. Levoska, “Relaxation of induced polar state in relaxor PbMg1/3Nb2/3O3 thin films studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 222907 (2005).
[77] W. Siemons, C. Beekman, G. J. MacDougall, J. L. Zarestky, S. E. Nagler, and H. M. Christen, “A complete strain–temperature phase diagram for BiFeO3 films on SrTiO3 and LaAlO3 (001) substrates,” J. Phys. D: Appl. Phys. 47, 034011 (2014).
[78] J. Kreisel, P. Jadhav, O. Chaix-Pluchery, M. Varela, N. Dix, F. Sánchez, and J. Fontcuberta, “A phase transition close to room temperature in BiFeO3 thin films,” J. Phys.: Condens. Matter 23, 342202 (2011).
[79] H. J. Liu, C. W. Liang, W.-I. Liang, H. J. Chen, J. C. Yang, C. Y. Peng, G. F. Wang, F. N. Chu, Y. C. Chen, H. Y. Lee, L. Chang, S. J. Lin, and Y. H. Chu, “Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and x-ray diffraction,” Phys. Rev. B 85, 014104 (2012).
[80] K. T. Ko, M. H. Jung, Q. He, J. H. Lee, C. S. Woo, K. Chu, J. Seidel, B. G. Jeon, Y. S. Oh, K. H. Kim, W. I. Liang, H. J. Chen, Y. H. Chu, Y. H. Jeong, R. Ramesh, J. H. Park, and C. H. Yang, “Concurrent transition of ferroelectric and magnetic ordering near room temperature,” Nat. Commun. 2, 567 (2011).
[81] I. C. Infante, J. Juraszek, S. Fusil, B. Dupé, P. Gemeiner, O. Diéguez, F. Pailloux, S. Jouen, E. Jacquet, G. Geneste, J. Pacaud, J. Íñiguez, L. Bellaiche, A. Barthélémy, B. Dkhil, and M. Bibes, “Multiferroic phase transition near room temperature in BiFeO3 films,” Phys. Rev. Lett. 107, 237601 (2011).
[82] G. J. MacDougall, H. M. Christen, W. Siemons, M. D. Biegalski, J. L. Zarestky, S. Liang, E. Dagotto, and S. E. Nagler, “Antiferromagnetic transitions in tetragonal-like BiFeO3,” Phys. Rev. B 85, 100406 (2012).
[83] W. Siemons, G. J. MacDougall, A. A. Aczel, J. L. Zarestky, M. D. Biegalski, S. Liang, E. Dagotto, S. E. Nagler, and H. M. Christen, “Strain dependence of transition temperatures and structural symmetry of BiFeO3 within the tetragonal-like structure,” Appl. Phys. Lett. 101, 212901 (2012).
[84] C. Escorihuela-Sayalero, O. Diéguez, and J. Íñiguez, “Strain engineering magnetic frustration in perovskite oxide thin films,” Phys. Rev. Lett. 109, 247202 (2012).
[85] K. Y. Choi, S. H. Do, P. Lemmens, D. Wulferding, C. S. Woo, J. H. Lee, K. Chu, and C. H. Yang, “Anomalous low-energy phonons in nearly tetragonal BiFeO3 thin films,” Phys. Rev. B 84, 132408 (2011).
[86] M. K. Singh, R. S. Katiyar, and J. F. Scott, “New magnetic phase transitions in BiFeO3,” J. Phys.: Condens. Matter 20, 252203 (2008).
[87] J. F. Scott, M. K. Singh, and R. S. Katiyar, “Critical phenomena at the 140 and 200 K magnetic phase transitions in BiFeO3,” J. Phys.: Condens. Matter 20, 322203 (2008).
[88] P. Rovillain, M. Cazayous, Y. Gallais, A. Sacuto, R. P. S. M. Lobo, D. Lebeugle, and D. Colson, “Polar phonons and spin excitations coupling in multiferroic BiFeO3 crystals,” Phys. Rev. B 79, 180411(R) (2009).
[89] Z. Y. Zhang, Z. M. Jin, Q. F. Pan, Y. Xu, X. Lin, G. H. Ma, and Z. X. Cheng, “Temperature dependent photoexcited carrier dynamics in multiferroic BiFeO3 film: A hidden phase transition,” Appl. Phys. Lett. 104, 151902 (2014).
[90] S. Nakamura, S. Soeya, N. Ikeda, and M. Tanaka, “Spin‐glass behavior in amorphous BiFeO3,” J. Appl. Phys. 74, 5652 (1993).
[91] H. Dixit, J. H. Lee, J. T. Krogel, S. Okamoto, and V. R. Cooper, “Stabilization of weak ferromagnetism by strong magnetic response to epitaxial strain in multiferroic BiFeO3,” Sci. Rep. 5, 12969 (2015).
[92] A. Kumar, J. F. Scott, R. Martinez, G. Srinivasan, and R. S. Katiyar, “In-plane dielectric and magnetoelectric studies of BiFeO3,” Phys. Status Solidi A 209, 1207 (2012).
[93] E. Granado, A. García, J. A. Sanjurjo, C. Rettori, I. Torriani, F. Prado, R. D. Sánchez, A. Caneiro, and S. B. Oseroff, “Magnetic ordering effects in the Raman spectra of La1− xMn1− xO3,” Phys. Rev. B 60, 11879 (1999).
[94] J. Vermette, S. Jandl, and M. M. Gospodinov, “Raman study of spin–phonon coupling in ErMnO3,” J. Phys.: Condens. Matter 20, 425219 (2008).
[95] M. K. Singh, W. Prellier, H. M. Jang, and R. S. Katiyar, “Anomalous magnetic ordering induced spin–phonon coupling in BiFeO3 thin films,” Solid State Commun. 149, 1971 (2009).
[96] R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, “Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3,” Phys. Rev. B 73, 132101 (2006).
[97] A. V. Ravindra, P. Padhan, and W. Prellier, “Electronic structure and optical band gap of CoFe2O4 thin films,” Appl. Phys. Lett. 101, 161902 (2012).
[98] C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, A. Talkenberger, D. R. T. Zahn, D. Rafaja, and J. Kortus, “Optical and magneto-optical study of nickel and cobalt ferrite epitaxial thin films and submicron structures,” J. Appl. Phys. 113, 084101 (2013).
[99] L. Shen, M. Althammer, N. Pachauri, B. Loukya, R. Datta, M. Iliev, N. Bao , and A. Gupta, “Epitaxial growth of spinel cobalt ferrite films on MgAl2O4 substrates by direct liquid injection chemical vapor deposition,” J. Cryst. Growth 390, 61 (2014).
[100] P. Chandramohan, M. P. Srinivasan, S. Velmurugan, and S. V. Narasimhan, “Cation distribution and particle size effect on Raman spectrum of CoFe2O4,” J. Solid State Chem. 184, 89 (2011).
[101] Y. Y. Liao, Y. W. Li, Z. G. Hu, and J. H. Chu, “Temperature dependent phonon Raman scattering of highly a-axis oriented CoFe2O4 inverse spinel ferromagnetic films grown by pulsed laser deposition,” Appl. Phys. Lett. 100, 071905 (2012).
[102] A. Segmüller, “Characterization of epitaxial thin films by x-ray diffraction,” J. Vac. Sci. Technol. A 9, 2477 (1991).
[103] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).
[104] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mat. Sci. 6, 15 (1996).
[105] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett. 77, 3865 (1996).
[106] Y. H. Hou, Y. J. Zhao, Z. W. Liu, H. Y. Yu, X. C. Zhong, W. Q. Qiu, D. C. Zeng, and L. S. Wen, “Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4: A first-principles study,” J. Phys. D: Appl. Phys., 43, 445003 (2010).
[107] W. Huang, J. Zhu, H. Z. Zeng, X. H. Wei, Y. Zhang, and Y. R. Li, “Strain induced magnetic anisotropy in highly epitaxial CoFe2O4 thin films,” Appl. Phys. Lett. 89, 262506 (2006).
[108] H. J. Liu, L. Y. Chen, Q. He, C. W. Liang, Y. Z. Chen, Y. S. Chien, Y. H. Hsieh, S. J. Lin, E. Arenholz, C. W. Luo, “Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures,” ACS Nano 6, 6952 (2012).
[109] H. J. Liu, V. T. Tra, Y. J. Chen, R. Huang, C. G. Duan, Y. H. Hsieh, H. J. Lin, J. Y. Lin, C. T. Chen, Y. Ikuhara, and Y. H. Chu, “Large magneto-resistance in magnetically coupled SrRuO3–CoFe2O4 self assembled nanostructures,” Adv. Mater. 25, 4753 (2013).
[110] B. S. Holinsworth, D. Mazumdar, H. Sims, Q.-C. Sun, M. K. Yurtisigi, S. K. Sarker, A. Gupta, W. H. Butler, and J. L. Musfeldt, “Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4,” Appl. Phys. Lett. 103, 082406 (2013).
[111] K. Dileep, B. Loukya, N. Pachauri, A. Gupta, and R. Datta, “Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy,” J. Appl. Phys. 116, 103505 (2014).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw