進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1310201611483500
論文名稱(中文) 應用於連續漸近式類比數位轉換器之遞迴式離散轉換數位校正技術
論文名稱(英文) A Digital Calibration Technique with Recursive Discrete Fourier Transform for Successive-Approximation Analog-to-Digital Converters
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 1
出版年 105
研究生(中文) 阮翌翔
研究生(英文) Yi-Hsiang Juan
學號 N28001315
學位類別 博士
語文別 英文
論文頁數 88頁
口試委員 召集委員-邱俊誠
指導教授-羅錦興
共同指導教授-李順裕
口試委員-王朝欽
口試委員-黃柏鈞
口試委員-黃弘一
口試委員-賴信志
中文關鍵字 前端式數位校正技術  類比數位轉換器  遞迴式離散傅立葉轉換  遞迴式離散餘弦轉換  矩陣分析  測試平台 
英文關鍵字 Foreground digital calibration  analo-to-digital converters (ADCs)  recursive discrete Fourier transform (RDFT)  recursive discrete cosine transform (RDCT)  matrix-form analysis  testing platform 
學科別分類
中文摘要 不論是在生醫擷取系統、通訊系統或是影像處理系統等應用上,都必須要透過類比數位轉換器來實現類比訊號與數位訊號的介面轉換。在目前所存在的類比數位轉換器架構中,連續漸近式類比數位轉換器是非常適合在生醫訊號擷取系統的應用上,主要是因為連續漸近式類比數位轉換器有著高效能和中等轉換速度的優點。然而對於高解析度的連續漸近式轉換器而言,主要受到製成漂移而產生的電容不匹配問題以及比較器直流漂移的誤差,進而影響到高解析度的轉換器效能。一般來說,電容的不匹配問題和直流漂移的誤差會造成諧波失真並直接反映在輸出的功率頻譜上。因此必須要透過校正的技術來提升電路的效能以及確保整體系統的訊號品質。
本文提出一個前端式的數位校正技術,主要透過遞迴式離散傅立葉轉換器、遞迴式離散餘弦轉換器以及矩陣分析的方式來補償連續漸近式類比數位轉換器中電容不匹配和直流偏移的誤差。此校正技術主要是透過轉換器或是矩陣分析的方式,評估受到不匹配影響的真實數位類比轉換器電容陣列的電容比例,並在數位輸出端進行誤差的補償。此外遞迴式離散傅立葉轉換器和遞迴式離散餘弦轉換器的校正技術還可以抑制比較器中直流偏移的誤差問題。在遞迴式離散傅立葉轉換器以及遞迴式離散餘弦轉換器的設計上,因為只需要計算主頻和第三根諧波失真,所以分別只需要2N+2以及2N個乘法器,另外都需要4N+2個加法器。此外在轉換長度的設計上為4096點而在係數寬度設計上為24位元。
對於類比數位轉換器的測試應用而言,我們提出了一個具有前端式數位校正技術的自動測試平台。在此平台的設計上,我們使用數位控制碼來控制Arduino開發版中的高解析度數位類比轉換器,並利用Arduino開發板產生出測試系統中需要的弦波測試訊號以及時脈訊號。此外在此測試平台中,採用了離散傅立葉轉換器來量測類比數位轉換器的動態效能,同時也使用了遞迴式離散傅立葉轉換器來實現數位校正的技術。因此透過此自動測試平台,可以幫助設計者量測類比數位轉換器的動態效能,並可透過校正技術來改善轉換器的效能。
根據模擬以及量測的結果,本文所提出的校正技術能夠減少諧波失真的問題以及提升類比數位轉換器的整體效能。另外本文所提出的校正技術,不需要額外的類比電路以及擁有較低複雜度的數位演算法。相比較於傳統的傅立葉離散轉換器,遞迴式的離散傅立葉轉換器和離散餘弦轉換器有著可調整式長度、低複雜度、快速計算和低硬體成本等優點。此外與先進技術相比較,我們提出的矩陣式技術有這較低的運算複雜度,我們可以降低99%的乘法器運算以及99% 的加法器運算。因此透過本文所提出的校正技術能夠有效的幫助設計者補償轉換器的誤差並且提升整體效能。
英文摘要 Analog-to-digital converters (ADCs) are required for interfacing analog signals to digital signals in many applications, such as in biomedical acquisition systems, communication systems, or image processing systems. Among the existing ADC architectures, successive approximation (SAR) ADCs are popoular for their excellent energy efficiency and medium speed conversion, which makes them appropriate for use in biomedical signal acquisition. However, the high-performance limiataions that occur with SAR ADCs are mainly due to capacitor mismatch and DC offset, because of the problem of process variation. The capacitor mismatch and DC offset error in the characteristic function tends to immediately causes harmonic distortion, and these errors will then deteriorate the performance of the ADC. Calibration is thus essential to ensure system quality and enhance the performance of the ADC.
The foreground digital calibration method proposed in this work is based on the recursive discrete Fourier transform (RDFT), recursive discrete cosine transform (RDCT) and matrix-form analysis (MFA), and is used to compensate for the capacitor mismatch error for the SAR ADC. The RDFT, RDCT and MFA calibration method, can be applied to evaluate the real radix of a DAC capacitor array with a new digital output to compensate for the errors caused by capacitor mismatch. In addition, the RDFT and RDCT calibration techniques can also eliminate the DC offset of a comparator circuit. In this proposed method, the RDFT and RDCT calibration method only needs to calculate the main and third harmonic tones, so the computational complexity of the RDFT/RDCT algorithm requires a total of (2N+2)/2N multiplications and (4N+2) additions. In addition, the transform length is selected to 4,096 and the world length of coefficient is set to 24 bits.
For the ADC testing application, a self-testing platform with a foreground calibration technique for SAR ADC is presented. In this work, a high-accuracy DAC with digital control is used to generate the sinusoidal test signal. This signal is then implemented using an Arduino, and the clock signal is generated to test the ADCs. In addition, a fast Fourier transform (FFT) and RDFT processor is adopted to measure the dynamic performance and carry out the calibration, respectively. Therefore, this platform can help the designer to measure the dynamic performance of the ADC, and can also improve the performance of the ADC by using the proposed calibration technique.
According to the simulation and measurement results, the proposed calibration method can reduce the harmonic distortion and improve the performance of the ADC. Here, the proposed calibration method has the advantage that it does not require extra analog circuit or complex digital circuits. Therefore, the proposed calibration method that utilizes the RDFT and RDCT processor instead of the FFT processor has the advantage of variable transform length, lower complexity, faster computation and less hardware cost. Comparing the computational complexity of the MFA technique with other state-of-the-art approaches, the proposed MFA algorithm dramatically reduces the multiplication by 99% and addition by 99%. As aresult, the proposed method can help designers to compensate for errors and enhance the performance of the ADC.
論文目次 摘要 I
Abstract IV
誌謝 VII
Table of Contents X
Table Captions XI
Figure Captions XIII
Chapter 1 Introduction 1
1.1 Analog Calibration Method 2
1.2 Digital Calibration Method 4
1.2.1 Foreground Calibration Method 5
1.2.2 Background Calibration Method 7
1.3 Motivation 13
1.4 Organization of Dissertation 14
Chapter 2 SAR ADC Design 16
2.1 Basic Circuit Theory and Operation 16
2.2 Non-Ideal Effect 17
2.3 Circuit Design 19
2.3.1 Track-and-Hold Circuit Design 19
2.3.2 Comparator Circuit 20
2.3.3 Digital-to-Analog Converter (DAC) Circuit 21
2.3.4 SAR Controller Circuit 23
2.4 Pre-Layout Simulation Results 24
Chapter 3 Proposed Calibration Method 27
3.1 Proposed Digital Calibration Method Based on a DFT Processor 27
3.1.1 Proposed Calibration Algorithm 27
3.1.2 Processing Flow of the Proposed Calibration Method 30
3.1.3 Simulation Verification 31
3.1.3.1. Matlab Simulation 31
3.1.3.2. H-Spice Simulation 36
3.2 Proposed Digital Calibration Method Based on Matrix-Form Analysis 38
3.2.1. MFA Algorithm Derivation 39
3.2.2. Matlab Simulation Result 43
Chapter 4 Design of the Recursive DFT/DCT and MFA Processor 45
4.1. Recursive DFT Design and Proposed RDFT-based Calibration Formula 45
4.2. Recursive DCT Design and Proposed RDCT-based Calibration Formula 49
4.3. Compact Hardware Accelerator Design of the Proposed MFA Algorithm 51
4.4. Comparison and Discussion 52
Chapter 5 Self-Testing Platform Design 55
5.1. Matlab Model and Verification 55
5.2. Testing Stimulus Signal 57
5.3. Proposed Platform Design 59
Chapter 6 Results 61
6.1. 12-bit SAR ADC and Measurement Results 63
6.2. 12-bit SAR ADC with RDFT Processor and Measurement Results 69
6.3. 12-bit SAR ADC with RDFT Processor and Digital Calibration Circuit and Measurement Results 71
6.4. Self-Testing Platform Measurement Results 75
6.5. Comparison and Discussion 78
Chapter 7 Conclusion and Furture work 80
References 83
參考文獻 [1] F. Kuttner,“A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13μm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 176-177, Feb. 2002.
[2] S. P. Singh, A. Prabhakar, and A. B. Bhattcharyya,“C-2C labber-based D/A converters for PCM codecs,” IEEE J. Solid-State Circuits, vol. sc-22, no. 6, pp. 1197-1200, Dec. 1987.
[3] H.-S. Lee, D. A. Hodges and P. R. Gray,“A self-calibrating 15 bit CMOS A/D converter,” IEEE J. Solid-State Circuits, vol. sc-19, no 6, pp. 813-819, Dec. 1984.
[4] X. Wang, H. Huang and Q. Li,“Design considerations of ultralow-voltage self-calibration SAR ADC,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no 4, pp. 337-341, Apr. 2015.
[5] H. Ha, S. K. Lee, B. Kim, H. J. Park and J. Y. Sim, “A 0.5-V, 1.47-μW 40-kS/s 13-bit SAR ADC with capacitor error compensation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no 11, pp. 840-844, Nov. 2014.
[6] I. -j. Yeo, B. Kim, M. Chu and B. -g. Lee,“Digital foreground calibration of capacitor mismatch for SAR ADC,” Electron Lett., vol. 50, no 20, pp. 1423-1425, Sep. 2014.
[7] S. Y. Lee, M. C. Liang, and C. H. Hsieh,“FFT-based calibration method for 1.5 bit/stage pipelined ADCs,” Int. J. Circuit Theory Appl., vol. 43, no 4, pp. 455-469, Oct. 2013.
[8] E. Balestrieri, P. Daponte, and S. Rapuano,“A state of the art on ADC error compensation methods,” IEEE Trans. Instrum Meas., vol. 54, no 4, pp. 1388-1394, Aug. 1987.
[9] H. Lundin,“Post-correction of analog-to-digital converter,” Master's thesis, Royal Inst. Technology, Stockholm, Sweden, 2003.
[10] R. Xu, B. Liu, and J. Yuan,“Digitally calibrated 768-kS/s 10-b minimum-size SAR ADC array with dithering,” IEEE J. Solid-State Circuits, vol. 47, no 9, pp. 1-12, Sep. 2012.
[11] P. Nikaeen, and B. Murmann,“Digital compensation of dynamic acquisition errors at the front-end of high-performance A/D converter,” IEEE J. Sel. Topicignal Process vol. 3, no 3, pp. 499-508, Jun. 2009.
[12] G. Wang, F. Kacani, and Y. Chiu,“IRD digital background calibration of SAR ADC with coarse reference ADC acceleration,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no 1, pp. 11-15, Jan. 2014.
[13] J. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David, and C. Brenneman,“All-digital background calibration of a successive approximation ADC using the“split” ADC architecture,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no 10, pp. 2355-2365, Oct. 2011.
[14] J. Y. Um, Y. J. Kim, E. W. Song, J. Y. Sim, and H. J. Park,“A digital calibration of split-capacitor DAC for a differential SAR ADC without additional analog circuits,” IEEE Trans. Circuits Syst. I, Reg. papers, vol. 60, no 11, pp. 2845-2856, Nov. 2013.
[15] C. A. Schmidt, O. Lifschitz, J. E. Cousseau, J. L. Figueroa, and P. Julián,“Methodology and measurement setup for analog-to-digital converter postcompensation,” IEEE Trans. Instrum Meas., vol. 63, no 3, pp. 658-666, Mar. 2014.
[16] H. M. Chang, K. Y. Lin, and K. T. Cheng,“Tester-assisted calibration and screening for digitally-calibrated ADCs,” IEEE Trans. Circuits Syst. I, Reg. papers, vol. 58, no 12, pp. 2838-2848, Dec. 2011.
[17] Y. Chiu, C. W. Tsang, B. Nikolić, and P. R. Gray,“Least mean square adaptive digital background calibration of pipelined analog-to-digital converters,” IEEE Trans. Circuits Syst. I, Reg. papers, vol. 51, no 1, pp. 38-46, Jan. 2004.
[18] X. Zou, X. Xu, L. Yao, and Y. Lian,“A 1-V 450-nW fully integrated programmable biomedical sensor interface chip,” IEEE J. Solid-State Circuits, vol. 44, no 4, pp. 1067-1077, Apr. 2009.
[19] K. A. Ng, and P. K. Chan,“A CMOS analog front-end IC for portable EEG/ECG monitoring applications,” IEEE Trans. Circuits Syst. I, Reg. papers, vol. 52, no 11, pp. 2335-2347, Nov. 2005.
[20] R. F. Yazicioglu, P. Merken, R. Puers, and C. V. Hoof,“A 60 μW 60nV/√Hz readout front-end for portable biopotential acquisition systems,” IEEE J. Solid-State Circuits, vol. 42, no 5, pp. 1100-1110, May. 2007.
[21] X. Zhang, and Y. Lian,“A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no 6, pp. 834-843, Dec. 2014.
[22] H. Nakane, R. Ujiie, T. Oshima, T. Yamamoto, K. Kimura, Y. Okuda, K. Tsuiji, and T. Matsuura,“A fully integrated SAR ADC using digital correction technique for triple-mode mobile transceiver,” IEEE J. Solid-State Circuits, vol. 49, no 11, pp. 2503-2515, Nov. 2014.
[23] T. Forber, and R. Gharpurey,“A 2 GS/s frequency-folded ADC-based broadband sampling receiver,” IEEE J. Solid-State Circuits, vol. 49, no 9, pp. 1971-1983, Sep. 2014.
[24] T. Shah, and O. Dabeer,“Optimal subcarrier power allocation for OFDM with low precision ADC at receiver,” IEEE Trans. Commun., vol. 61, no 22, pp. 4591-4601, Nov. 2013.
[25] P. J. A. Harpe, B. Büsze, K. Philips and H. d. Groot,“A 0.47-1.6 mW 5-bit 0.5-1 GS/s time-interleaved SAR ADC for low-power UWB radios,” IEEE J. Solid-State Circuits, vol. 47, no 7, pp. 1594-1602, Jul. 2012.
[26] F. Tang, D. G. Chen, B. Wang and A. Bermak,“Low-power CMOS image sensor based on column-parallel single-slope/SAR quantization scheme,” IEEE Trans. Electron Devices, vol. 60, no 8, pp. 2561-2566, Aug. 2013.
[27] S. F. Yeh, and C. C. Hsieh,“Novel single-slope ADC design for full well capacity expansion of CMOS image sensor,” IEEE Sensors J., vol. 13, no 3, pp. 1012-1017, Mar. 2013.
[28] D. G. Chen, M. K. Law, Y. Lian, and A. Bermak,“Low-power CMOS laser doppler imaging using non-cds pixel readout and 13.6-bit SAR ADC,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no 1, pp. 186-199, Feb. 2016.
[29] D. G. Chen, F. Tang, and A. Bermak,“A low-power pilot-DAC based column parallel 8b SAR ADC with forward error correction for CMOS image sensors,” IEEE Trans. Circuits Syst. I, Reg. papers, vol. 60, no 10, pp. 2572-2583, Oct. 2013.
[30] L. L. Lewyn, T. Ytterdal, C. Wulff, and K. Martin“Analog circuit design in nanoscale CMOS technologies,” Proc. IEEE, vol. 97, no 10, pp. 1687-1714, Oct. 2009.
[31] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin,“A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no 4, pp. 731-740, Apr. 2010.
[32] S. W. M. Chen, and R. W. Brodersen,“A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no 12, pp. 2669-2680, Dec. 2006.
[33] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin“A 0.92 mW 10-bit 50-MS/s SAR ADC in 0.13μm CMOS process,” in IEEE Symp. VLSI Circuits Dig., pp. 236-237, Jun. 2009.
[34] H. W. Chang, H. Y. Huang, Y. H. Juan, W. S. Wang, and C. H. Luo,“Adaptive successive approximation ADC for biomedical acquisition system,” Microelectronic Journal, vol. 44, no. 9, pp. 729-736, Sep. 2013.
[35] P. R. Kinget,“Device mismatch and tradeoffs in the design of analog circuits,” IEEE J. Solid-State Circuits, vol. 40, no 6, pp. 1212-1224, Jun. 2005.
[36] B. Razavi, Design of Analog CMOS Integrated Circuits. New York, NY, USA: McGraw-Hill, 2002.
[37] A. M. Abo, and P. R. Gray,“A 15-V, 10-bit, 14.3-MS/s CMOS pipelined nanlog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no 5, pp. 599-606, May. 1999.
[38] S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lin,“An 8-bit 200-MSample/s pipleined ADC with mixed-mode front-end S/H circuit,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no 6, pp. 1430-1440, Jul. 2008.
[39] L. Sun, B. Li, A. K. Y. Wong, W. T. Ng and K. P. Pun,“A charge recycling SAR ADC with a LSB-Down switching scheme,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no 2, pp. 356-365, Feb. 2015.
[40] 李國銘, 國立交通大學電機與控制工程學系碩士論文“應用於無線感測網路之超低耗能連續近似式類比數位轉換器之設計”, 95年7月.
[41] T. Moosazadeh, and M. Yavari,“A calibration technique for pipelined ADCs using self-measurement and histogram-based test methods,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no 9, pp. 826-830, Sep. 2015.
[42] M. Burns, and W. Roberts, An Introuduction to Mixed-Signal IC Test and Measurement. New York, NY, USA: McGraw-Hill, 2001.
[43] Y. Zhu, C. H. Chan, S. S. Wong, U. S. Pan and R. P. Martins,“Histogram-based ratio mismatch calibration for bridge-DAC in 12-bit 120 MS/s SAR ADC,” IEEE Trans. Very Large Scale Integer. (VLSI) Syst., vol. 24, no 3, pp. 1203-1207, Mar. 2016.
[44] J. Blair,“Histogram measurement of ADC nonlinearities using sine waves,” IEEE Trans. Instrum Meas., vol. 43, no 3, pp. 373-383, Jun. 1994.
[45] H. W. Ting, B. D. Liu, and S. J. Chang,“A histogram-based testing method for estimating A/D converter performance,” IEEE Trans. Instrum Meas., vol. 57, no 2, pp. 420-427, Feb. 2008.
[46] S. Max, and R. Liggiero,“Enhanced ADC sine wave histogram test,” IEEE Intern. Instr. and Measur. Techn. Conf. (I2MTC), pp. 16525-1657, May. 2015.
[47] S. Y. Lee, and C. C. Chen,“VLSI implementation of programmable FFT architectures for OFDM communication system,” in Proc. IWCMC, pp. 893-898, Jul. 2006.
[48] M. Shin, and H. Lee,“A high-speed four-parallel radix-24 FFT processor for UWM applications,” Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 960-963, May. 2008.
[49] L. Jia, Y. Gao, and H. Tenhunen,“A pipelined shared-memory architecture for FFT processor,” in Proc. IEEE 42nd Midwast Symp. Circuits. and Syst., pp. 804-807, Aug. 1999.
[50] Y. W. Lin, H. Y. Liu, and C. Y. Lee,“A dynamic scaling FFT processor for DVB-T applications,” IEEE J. Solid-State Circuits, vol. 39, no 11, pp. 2005-2013, Nov. 2004.
[51] C. Cheng, and K. K. Parhi,“High-throughput VLSI architecture for FFT computation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no 10, pp. 863-867, Oct. 2007.
[52] M. Garrido, J. Grajal, M. A. Sánchez, and O. Gustafsson,“Pipelined radix-2k feedforward FFT architectures,” IEEE Trans. Very Large Scale Integer. (VLSI) Syst., vol. 21, no 1, pp. 23-32, Jan. 2013.
[53] S. C. Lai, S. F. Lei, C. L. Chang, C. C. Lin and C. H. Luo,“Low computational complexity, low power, and low area design for the implementation of recursive DFT and IDFT algorithms,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no 12, pp. 921-925, Dec. 2009.
[54] L. D. Van, and C. C. Yang,“High-speed area-efficient recursive DFT/IDFT architectures,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 257-360, May. 2004.
[55] L. D. Van, Y. C. Yu, C. M. Huang, and C. T. Lin,“Low computation cycle and high speed recursive DFT/IDFT: VLSI algorithm and architecture,” in Proc. IEEE Workshop Signal Process. Syst.: Des. Implementation (SiPS), pp. 579-584, Nov. 2005.
[56] L. D. Van, C. T. Lin, and Y. C. Yu,“VLSI architecture for the low-computation cycle and power-efficient recursive DFT/IDFT design,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. E90-A, no 8, pp. 1644-1652, Aug. 2007.
[57] S. C. Lai, W. H. Juang, C. L. Chang, C. C. Lin, C. H. Luo, and S. F. Lei,“Low-computation-cycle, power-efficient, and reconfigurable design of recursive DFT for portable digital radio mondiale receiver,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no 8, pp. 647-651, Aug. 2010.
[58] K. A. Lee, W. S. Gan and S. M. Kuo, Subband Adaptive Filtering Theory and Implementation. A John Wiley and Sons, Ltd., Publication, 2009.
[59] A. C. Carusone, and D. A. Johns,“Digital LMS adaption of analog filters without gradient information,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 50, no 9, pp. 539-552, Sep. 2003.
[60] N. Li, Y. Zhang, and Y. Hao,“Steady state performance analysis of an approximation optimal variable step size LMS algorithm,” in Proc. IEEE Conf. Ind. Elect. Appl. (ICIEA), Jun. 2008, pp. 1379-1382.
[61] J. F. Schmidt, J. E. Cousseau, R. Wichman, and S. Werner,“Low-complexity channel prediction using approximated recursive DCT,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no 10, pp. 2520-2530, Oct. 2011.
[62] S. F. Lei, S. C. Lai, P. Y. Cheng, and C. H. Luo,“Low complexity and fast computation for recursive MDCT and IMDCT algorithms,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no 7, pp. 571-575, Jul. 2010.
[63] C. H. Chen, B. D. Liu, and J. F. Yang,“Recursive architecture for realizing modified discrete cosine transform and its inverse,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 50, no 1, pp. 38-45, Jan. 2003.
[64] L. P. Chau, and W. C. Siu,“Recursive algorithm for the discrete cosine transform with general length,” Electron. Lett., vol. 30, no 3, pp. 197-198, Feb. 1994.
[65] C. H. Chen, C. B. Wu, B. D. Liu, and J. F. Yang,“Recursive architectures for the forward and inverse modified discrete cosine transform,” in Proc. IEEE Workshop Signal Process. Syst.: Des. Implementation (SiPS), pp. 50-59, Oct. 2000.
[66] D. Agrež,“Analysis of theresidual spectrum in ADC dynamic testing,” IEEE Trans. Instrum Meas., vol. 58, no 3, pp. 506-511, Mar. 2009.
[67] P. Carbone, and G. Chiorboli,“ADC sinewave histogram testing with quasi-coherent sampling,” IEEE Trans. Instrum Meas., vol. 50, no 4, pp. 949-953, Aug. 2001.
[68] J. J. Blair,“Selecting test frequencies for sinewave test of ADCs,” IEEE Trans. Instrum Meas., vol. 54, no 1, pp. 73-78, Feb. 2005.
[69] D. Belega, and D. Dallet,“Accurate ADC dynamic testing by means of the three-parameter sine-fit algorithm,” in Proc. IEEE 15th Int. Mixed-Signals, Sens., Syst. Test Workshop, pp. 1-6, Jun. 2009.
[70] M. S. Ong, Y. C. Kuang, P. S. Liam, and M. P. L. Ooi,“Multisine with optimal phase-plane uniformity for ADC testing,” IEEE Trans. Instrum Meas., vol. 61, no 3, pp. 566-578, Mar. 2012.
[71] W. Jiang, and V. D. Agrawal,“Built-in self-calibration of on-chip DAC and ADC,” in Proc. InternationalTest Conf., pp. 1-10, Oct. 2008.
[72] S. Thirunakkarasu, and B. Bakkaloglu,“Built-in self-calibration and digital-trim technique for 14-bit SAR ADCs achieving ±1LSB INL,” IEEE Trans. Very Large Scale Integer. (VLSI) Syst., vol. 23, no 5, pp. 916-925, May. 2015.
[73] F. Abe, Y. Kobayashi, K. Kato, O. Kobayashi and H. Kobayashi,“Low-distortion signal generation for ADC testing,” in Proc. International Test Conf., pp. 1-10, Oct. 2014.
[74] E. Santin, L. B. Oliveira, B. Nowacki, and J. Goes,“A fully integrated and reconfigurable architecture for coherent self-testing of high speed analog-to-digital converters,” IEEE Trans. Circuits Syst. I, Reg. papers, vol. 58, no 7, pp. 1531-1541, Jul. 2011.
[75] Z. Czaja,“Self-testing of analog parts terminated by ADCs based on multiple sampling of time responses,” IEEE Trans. Instrum Meas., vol. 62, no 12, pp. 3160-3167, Dec. 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-10-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw