進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1308202013122500
論文名稱(中文) 鐵酸鈷-鈮酸鉀鈉複合材料的磁性、介電與磁電性質之研究
論文名稱(英文) Magnetic, dielectric and magnetoelectric properties of CoFe2O4 and K0.5Na0.5NbO3 composite
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 葉治均
研究生(英文) Chih-Chun Yeh
學號 N56071556
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 指導教授-齊孝定
口試委員-黃啟祥
口試委員-陳引幹
口試委員-龔慧貞
中文關鍵字 磁電效應  複合物  鐵酸鈷  鈮酸鉀鈉 
英文關鍵字 magnetoelectric  composite  CoFe2O4  K0.5Na0.5NbO3 
學科別分類
中文摘要 近年來,多鐵性複合磁電材料塊材與薄膜已經廣泛應用在電子元件的領域上,如記憶體儲存設備、磁感應器、電流量測探頭、高頻訊號處理器等,如何提升磁電耦合係數的大小也成為最需要努力的目標。
本論文主要使用固相合成法來製備多鐵性CoFe2O4-K0.5Na0.5NbO3 (CFO-KNN)磁電複合塊材,以均勻混合鑲嵌模式(0-3type)複合,並藉由調整兩相材料的體積比例與優化燒結參數,來找尋最大的磁電耦合係數,為此論文最大的目的。
以XRD、SEM與EDS分析下可以得到,在1100 ℃燒結溫度下持溫兩小時,單相KNN在熱處理過後,並沒有因為K與Na的揮發而形成雜項,且致密度表現良好;單相CFO在1100 ℃燒結溫度下持溫兩小時,結晶性與緻密程度相對較KNN低,不過仍為單一純相;CFO-KNN磁電複合材料在界面處輪廓清晰,在熱處理過後並無產生明顯界面化學反應,且緻密度表現良好。隨著某一相體積比例上升時,平均晶粒明顯有增大的趨勢,能夠推測在成長過程中,兩相間彼此可能互有應變應力產生。
以壓電量測儀可以了解,當KNN體積比例上升時,d33值跟著上升,推測由於CFO中的Co跟Fe的變價化合物,導致電子跳躍(electric hopping),產生漏電流,使試片能夠承受的崩潰電壓下降,進而使極化率與d33值下降。
以阻抗分析儀可了解,當CFO體積比例上升時,介電常數與介電損耗,在100 Hz時的值越高,推測是因為CFO中的Co與Fe變價化合物導致漏電流的原因。
在無DC外加磁場下,每個試片在外加AC磁場頻率為2.5kHz時,都有一個峰值,而CFO-KNN體積比為(80:20vol%)有最大磁電係數值為0.62 mV/Oe·cm。在施加外加DC磁場的情況下,每個試片在2.7 kOe的DC磁場大小下會與2.5 kHz的外加AC磁場頻率產生諧振,而磁電係數會有明顯峰值,而CFO-KNN體積比為(50:50vol%)在2.7 kOe的DC偏壓下有最大值,磁電係數為3.63 mV/oe·cm。
英文摘要 Magnetoelectric composites of CoFe2O4 (CFO) and K0.5Na0.5NbO3 (KNN) were synthesized by solid-state sintering method. The composition and microstructure of obtained samples were examined by X ray diffraction and scanning electron microscopy. The results showed a uniform mixture of both components in the composites without presence of any secondary phase. Dielectric constant and loss of the samples were studied by the impedance analysis. The piezoelectricity of the samples was confirmed by the measurement of d33 coefficient. Magnetoelectric (ME) voltage coefficient was investigated by a home-made unit, which allowed simultaneously application of both an AC (50 Hz~100 kHz) magnetic field of about 6 Oe and a DC bias field up to 6000 Oe. Under zero DC bias, the highest ME coefficient was measured at 2.5 kHz with the 80-20 vol% CFO-KNN samples, which was 0.62 mV/Oecm. With the application of a DC bias of 2.7 kOe, the highest ME coefficient was increased to 3.63 mV/Oecm at the AC frequency of 2.5 kHz, which was achieved with the 50-50 vol% CFO-KNN samples.
論文目次 摘要 I
Extended Abstract III
致謝 X
目錄 XII
圖目錄 XIV
表目錄 XIV
第一章 序論 1
1-1 多鐵性磁電材料簡介與應用 1
1-2 磁電複合材料之應用 6
1-2-1 磁感應器 7
1-3 研究動機 12
第二章 基礎理論 14
2-1 磁性值介紹 14
2-1-1 磁性原理介紹 14
2-1-2 磁滯曲線 19
2-2-2 極化機制 23
2-2-3 介電鬆弛 26
2-2-4 鐵電性 32
2-2-5 電滯曲線 32
2-3 磁電效應 35
2-3-1 多鐵性材料 37
2-3-2 單相多鐵性材料 38
2-3-3 多鐵性複合材料 42
2-4 鈮酸鉀鈉(K0.5Na0.5NbO3)簡介 46
2-5 鐵酸鈷(CoFe2O4)簡介 48
第三章 實驗儀器介紹 51
3-1 X光繞射儀(X-Ray Diffractometer,XRD) 51
3-2 掃描式電子顯微鏡(SEM) 52
3-3 壓電係數量測儀 53
3-4 磁電效應量測系統 (Magnetoelectric effect measure system) 53
第四章 試片製備 56
4-1 K0.5Na0.5NbO3 56
4-2 CoFe2O4 57
4-3 K0.5Na0.5NbO3+CoFe2O4複合材料 58
第五章 結果與討論 60
5-1 相結構與EDS分析 60
5-2壓電與介電性質分析 70
5-2-1 壓電性值分析 70
5-2-2 介電性值分析 72
5-3 磁電性值量測 74
第六章 結論 78
參考文獻 79
參考文獻 [1] Y. Wang, J. Hu, Y. Lin, and C.-W. Nan, "Multiferroic magnetoelectric composite nanostructures," NPG Asia Materials, vol. 2, no. 2, pp. 61-68, 2010.
[2] Y. Wang et al., "An extremely low equivalent magnetic noise magnetoelectric sensor," Adv. Mater., vol. 23, no. 35, pp. 4111-4, Sep 15 2011.
[3] J. Ma, Z. Shi, and C. W. Nan, "Magnetoelectric Properties of Composites of Single Pb(Zr,Ti)O3 Rods and Terfenol-D/Epoxy with a Single-Period of 1-3-Type Structure," Adv. Mater., vol. 19, no. 18, pp. 2571-2573, 2007.
[4] K. H. Lam, C. Y. Lo, and H. L. W. Chan, "Frequency response of magnetoelectric 1–3-type composites," J. Appl. Phys., vol. 107, no. 9, 2010.
[5] R. A. Islam, C.-b. Rong, J. P. Liu, and S. Priya, "Effect of gradient composite structure in cofired bilayer composites of Pb(Zr0.56Ti0.44)O3–Ni0.6Zn0.2Cu0.2Fe2O4 system on magnetoelectric coefficient," JMatS, vol. 43, no. 18, pp. 6337-6343, 2008.
[6] R. A. Islam, Y. Ni, A. G. Khachaturyan, and S. Priya, "Giant magnetoelectric effect in sintered multilayered composite structures," J. Appl. Phys., vol. 104, no. 4, 2008.
[7] R. A. Islam, V. Bedekar, N. Poudyal, J. P. Liu, and S. Priya, "Magnetoelectric properties of core-shell particulate nanocomposites," J. Appl. Phys., vol. 104, no. 10, 2008.
[8] K. Raidongia, A. Nag, A. Sundaresan, and C. N. R. Rao, "Multiferroic and magnetoelectric properties of core-shell CoFe2O4@BaTiO3 nanocomposites," Appl. Phys. Lett., vol. 97, no. 6, 2010.
[9] M. Liu et al., "Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires," Appl. Phys. Lett., vol. 90, no. 15, 2007.
[10] J. S. Andrew, J. D. Starr, and M. A. K. Budi, "Prospects for nanostructured multiferroic composite materials," Scripta Mater., vol. 74, pp. 38-43, 2014.
[11] S. Xie, F. Ma, Y. Liu, and J. Li, "Multiferroic CoFe2O4-Pb(Zr(0.52)Ti(0.48))O3 core-shell nanofibers and their magnetoelectric coupling," Nanoscale, vol. 3, no. 8, pp. 3152-8, Aug 2011.
[12] S. H. Xie, J. Y. Li, Y. Y. Liu, L. N. Lan, G. Jin, and Y. C. Zhou, "Electrospinning and multiferroic properties of NiFe2O4–Pb(Zr0.52Ti0.48)O3 composite nanofibers," J. Appl. Phys., vol. 104, no. 2, 2008.
[13] Y. Chen et al., "Quasi-one-dimensional miniature multiferroic magnetic field sensor with high sensitivity at zero bias field," Appl. Phys. Lett., vol. 99, no. 4, 2011.
[14] S. Dong, J. Zhai, J. Li, and D. Viehland, "Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity," Appl. Phys. Lett., vol. 89, no. 25, 2006.
[15] S. Dong, J. Zhai, Z. Xing, J. Li, and D. Viehland, "Giant magnetoelectric effect (under a dc magnetic bias of 2Oe) in laminate composites of FeBSiC alloy ribbons and Pb(Zn1∕3,Nb2∕3)O3–7%PbTiO3 fibers," Appl. Phys. Lett., vol. 91, no. 2, 2007.
[16] M. Feng et al., "Optimizing direct magnetoelectric coupling in Pb(Zr,Ti)O3/Ni multiferroic film heterostructures," Appl. Phys. Lett., vol. 106, no. 7, 2015.
[17] S. M. Gillette et al., "Effects of intrinsic magnetostriction on tube-topology magnetoelectric sensors with high magnetic field sensitivity," J. Appl. Phys., vol. 115, no. 17, 2014.
[18] H. Greve, E. Woltermann, H.-J. Quenzer, B. Wagner, and E. Quandt, "Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites," Appl. Phys. Lett., vol. 96, no. 18, 2010.
[19] R. A. Islam, H. Kim, S. Priya, and H. Stephanou, "Piezoelectric transformer based ultrahigh sensitivity magnetic field sensor," Appl. Phys. Lett., vol. 89, no. 15, 2006.
[20] R. C. Kambale et al., "Colossal magnetoelectric response of PZT thick films on Ni substrates with a conductive LaNiO3 electrode," J. Phys. D: Appl. Phys., vol. 46, no. 9, 2013.
[21] S. K. Mandal, G. Sreenivasulu, V. M. Petrov, and G. Srinivasan, "Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias," PhRvB, vol. 84, no. 1, 2011.
[22] R. Martínez, A. Kumar, R. Palai, G. Srinivasan, and R. S. Katiyar, "Observation of strong magnetoelectric effects in Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 thin film heterostructures," J. Appl. Phys., vol. 111, no. 10, 2012.
[23] A. McDannald, M. Staruch, G. Sreenivasulu, C. Cantoni, G. Srinivasan, and M. Jain, "Magnetoelectric coupling in solution derived 3-0 type PbZr0.52Ti0.48O3:xCoFe2O4 nanocomposite films," Appl. Phys. Lett., vol. 102, no. 12, 2013.
[24] K. Mori and M. Wuttig, "Magnetoelectric coupling in Terfenol-D/polyvinylidenedifluoride composites," Appl. Phys. Lett., vol. 81, no. 1, pp. 100-101, 2002.
[25] S. S. Nair, G. Pookat, V. Saravanan, and M. R. Anantharaman, "Lead free heterogeneous multilayers with giant magneto electric coupling for microelectronics/microelectromechanical systems applications," J. Appl. Phys., vol. 114, no. 6, 2013.
[26] H. Palneedi et al., "Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate," Appl. Phys. Lett., vol. 107, no. 1, 2015.
[27] C.-S. Park, K.-H. Cho, M. A. Arat, J. Evey, and S. Priya, "High magnetic field sensitivity in Pb(Zr,Ti)O3–Pb(Mg1/3Nb2/3)O3 single crystal/Terfenol-D/Metglas magnetoelectric laminate composites," J. Appl. Phys., vol. 107, no. 9, 2010.
[28] C.-S. Park, A. Khachaturyan, and S. Priya, "Giant magnetoelectric coupling in laminate thin film structure grown on magnetostrictive substrate," Appl. Phys. Lett., vol. 100, no. 19, 2012.
[29] M. Silva et al., "Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/Vitrovac laminates," ACS Appl Mater Interfaces, vol. 5, no. 21, pp. 10912-9, Nov 13 2013.
[30] G. Sreenivasulu, L. Y. Fetisov, Y. K. Fetisov, and G. Srinivasan, "Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects," Appl. Phys. Lett., vol. 100, no. 5, 2012.
[31] G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, "Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides," PhRvB, vol. 64, no. 21, 2001.
[32] K. Tahmasebi, A. Barzegar, J. Ding, T. S. Herng, A. Huang, and S. Shannigrahi, "Magnetoelectric effect in Pb(Zr0.95Ti0.05)O3 and CoFe2O4 heteroepitaxial thin film composite," Materials & Design, vol. 32, no. 4, pp. 2370-2373, 2011.
[33] M. Venkata Ramanaa, N. Ramamanohar Reddy, G. Sreenivasulu, K. V. Siva kumar, B. S. Murty, and V. R. K. Murthy, "Enhanced mangnetoelectric voltage in multiferroic particulate Ni0.83Co0.15Cu0.02Fe1.9O4−δ/PbZr0.52Ti0.48O3 composites – dielectric, piezoelectric and magnetic properties," CAP, vol. 9, no. 5, pp. 1134-1139, 2009.
[34] Y. Wang et al., "Lead-free magnetoelectric laminated composite of Mn-doped Na0.5Bi0.5TiO3–BaTiO3 single crystal and Tb0.3Dy0.7Fe1.92 alloy," J. Alloys Compd., vol. 496, no. 1-2, pp. L4-L6, 2010.
[35] N. Zhang, J. Fan, X. Rong, H. Cao, and J. Wei, "Magnetoelectric effect in laminate composites of Tb1−xDyxFe2−y and Fe-doped BaTiO3," J. Appl. Phys., vol. 101, no. 6, 2007.
[36] M. Liu and N. X. Sun, "Voltage control of magnetism in multiferroic heterostructures," Philos Trans A Math Phys Eng Sci, vol. 372, no. 2009, p. 20120439, Feb 28 2014.
[37] C. Fang et al., "Significant reduction of equivalent magnetic noise by in-plane series connection in magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3laminate composites," J. Phys. D: Appl. Phys., vol. 48, no. 46, 2015.
[38] D. Gun Lee et al., "Ultra-sensitive magnetoelectric microcantilever at a low frequency," Appl. Phys. Lett., vol. 101, no. 18, 2012.
[39] Y. Zhang, Z. Li, C. Deng, J. Ma, Y. Lin, and C.-W. Nan, "Demonstration of magnetoelectric read head of multiferroic heterostructures," Appl. Phys. Lett., vol. 92, no. 15, 2008.
[40] J. Ryu et al., "Ubiquitous magneto-mechano-electric generator," Energy Environ. Sci., vol. 8, no. 8, pp. 2402-2408, 2015.
[41] K. H. J. Buschow and F. R. Boer, Physics of magnetism and magnetic materials. Springer, 2003.
[42] D. Shi, Functional thin films and functional materials: new concepts and technologies. 清华大学出版社有限公司, 2003.
[43] J. C. Burfoot and G. W. Taylor, Polar dielectrics and their applications. Univ of California Press, 1979.
[44] K. C. Kao, Dielectric phenomena in solids. Elsevier, 2004.
[45] J. R. Macdonald and E. Barsoukov, "Impedance spectroscopy: theory, experiment, and applications," History, vol. 1, no. 8, pp. 1-13, 2005.
[46] P. Curie, "Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique," Journal de Physique Théorique et Appliquée, vol. 3, no. 1, pp. 393-415, 1894.
[47] L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of continuous media. elsevier, 2013.
[48] D. Astrov, "The magnetoelectric effect in antiferromagnetics," Sov. Phys. JETP, vol. 11, no. 3, pp. 708-709, 1960.
[49] G. T. Rado and V. J. Folen, "Observation of the Magnetically Induced Magnetoelectric Effect and Evidence for Antiferromagnetic Domains," Phys. Rev. Lett., vol. 7, no. 8, pp. 310-311, 1961.
[50] M. Fiebig, "Revival of the magnetoelectric effect," J. Phys. D: Appl. Phys., vol. 38, no. 8, pp. R123-R152, 2005.
[51] S. Naifar, S. Bradai, C. Viehweger, and O. Kanoun, "Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation," Measurement, vol. 106, pp. 251-263, 2017.
[52] W. F. Brown, R. M. Hornreich, and S. Shtrikman, "Upper Bound on the Magnetoelectric Susceptibility," Phys. Rev., vol. 168, no. 2, pp. 574-577, 1968.
[53] V. Wadhawan, Introduction to ferroic materials. CRC press, 2000.
[54] G. Smolenskiĭ and I. Chupis, "Ferroelectromagnets," SvPhU, vol. 25, no. 7, p. 475, 1982.
[55] N. A. Hill, "Why are there so few magnetic ferroelectrics?," ed: ACS Publications, 2000.
[56] N. Ortega, A. Kumar, J. Scott, and R. S. Katiyar, "Multifunctional magnetoelectric materials for device applications," J. Phys.: Condens. Matter, vol. 27, no. 50, p. 504002, 2015.
[57] E. Ascher, H. Rieder, H. Schmid, and H. Stössel, "Some properties of ferromagnetoelectric nickel‐iodine boracite, Ni3B7O13I," J. Appl. Phys., vol. 37, no. 3, pp. 1404-1405, 1966.
[58] E. Bertaut and M. Mercier, "Structure magnetique de MnYO3," Phys. Lett., vol. 5, no. 1, 1963.
[59] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T.-h. Arima, and Y. Tokura, "Magnetic control of ferroelectric polarization," Natur, vol. 426, no. 6962, pp. 55-58, 2003.
[60] B. D. Tellegen, "The gyrator, a new electric network element," Philips Res. Rep, vol. 3, no. 2, pp. 81-101, 1948.
[61] J. Van Suchtelen, "Product properties: a new application of composite materials," Philips Res. Rep, vol. 27, no. 1, pp. 28-37, 1972.
[62] J. Van den Boomgaard, D. Terrell, R. Born, and H. Giller, "An in situ grown eutectic magnetoelectric composite material," JMatS, vol. 9, no. 10, pp. 1705-1709, 1974.
[63] A. Van Run, D. Terrell, and J. Scholing, "An in situ grown eutectic magnetoelectric composite material," JMatS, vol. 9, no. 10, pp. 1710-1714, 1974.
[64] C.-W. Nan, M. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions," J. Appl. Phys., vol. 103, no. 3, p. 1, 2008.
[65] L. Egerton and D. M. Dillon, "Piezoelectric and dielectric properties of ceramics in the system potassium—sodium niobate," J. Am. Ceram. Soc., vol. 42, no. 9, pp. 438-442, 1959.
[66] A. Safari and M. Abazari, "Lead-free piezoelectric ceramics and thin films," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 10, pp. 2165-2176, 2010.
[67] M. Ahtee and A. Hewat, "Structural phase transitions in sodium–potassium niobate solid solutions by neutron powder diffraction," Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, vol. 34, no. 2, pp. 309-317, 1978.
[68] V. J. Tennery and K. W. Hang, "Thermal and X‐Ray diffraction studies of the NaNbO3–KNbO3 system," J. Appl. Phys., vol. 39, no. 10, pp. 4749-4753, 1968.
[69] K. Wang and J.-F. Li, "(K, Na) NbO 3-based lead-free piezoceramics: Phase transition, sintering and property enhancement," Journal of Advanced Ceramics, vol. 1, no. 1, pp. 24-37, 2012.
[70] H. C. Song et al., "Microstructure and piezoelectric properties of (1− x)(Na0. 5K0. 5) NbO3–xLiNbO3 ceramics," J. Am. Ceram. Soc., vol. 90, no. 6, pp. 1812-1816, 2007.
[71] Y. Chang, Z. Yang, Y. Hou, Z. Liu, and Z. Wang, "Effects of Li content on the phase structure and electrical properties of lead-free (K 0.46− x∕ 2 Na 0.54− x∕ 2 Li x)(Nb 0.76 Ta 0.20 Sb 0.04) O 3 ceramics," Appl. Phys. Lett., vol. 90, no. 23, p. 232905, 2007.
[72] Z. Yang, Y. Chang, and L. Wei, "Phase transitional behavior and electrical properties of lead-free (K 0.44 Na 0.52 Li 0.04)(Nb 0.96− x Ta x Sb 0.04) O 3 piezoelectric ceramics," Appl. Phys. Lett., vol. 90, no. 4, p. 042911, 2007.
[73] Y. Dai, X. Zhang, and G. Zhou, "Phase transitional behavior in K 0.5 Na 0.5 Nb O 3–Li Ta O 3 ceramics," Appl. Phys. Lett., vol. 90, no. 26, p. 262903, 2007.
[74] S. Zhang, R. Xia, T. R. Shrout, G. Zang, and J. Wang, "Piezoelectric properties in perovskite 0.948 (K 0.5 Na 0.5) Nb O 3–0.052 Li Sb O 3 lead-free ceramics," J. Appl. Phys., vol. 100, no. 10, p. 104108, 2006.
[75] S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett., vol. 93, no. 7, p. 305, 2008.
[76] K. Wang and J.-F. Li, "Analysis of crystallographic evolution in (Na, K) Nb O 3-based lead-free piezoceramics by x-ray diffraction," Appl. Phys. Lett., vol. 91, no. 26, p. 262902, 2007.
[77] M. Ahtee and A. Glazer, "Lattice parameters and tilted octahedra in sodium–potassium niobate solid solutions," Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, vol. 32, no. 3, pp. 434-446, 1976.
[78] A. Miszczyk and K. Darowicki, "Study of anticorrosion and microwave absorption properties of NiZn ferrite pigments," Anti-Corrosion Methods and Materials, 2011.
[79] M. M. Kumar, A. Srinivas, S. Suryanarayana, G. Kumar, and T. Bhimasankaram, "An experimental setup for dynamic measurement of magnetoelectric effect," Bull. Mater. Sci., vol. 21, no. 3, pp. 251-255, 1998.
[80] D. L.-I. Amplifier, "MODEL SR830," Interface, vol. 4, p. 24, 1993.
[81] H. Du, Z. Li, F. Tang, S. Qu, Z. Pei, and W. Zhou, "Preparation and piezoelectric properties of (K0. 5Na0. 5) NbO3 lead-free piezoelectric ceramics with pressure-less sintering," Materials Science and Engineering: B, vol. 131, no. 1-3, pp. 83-87, 2006.
[82] J. C. Maxwell, Electricity and magnetism. Dover New York, 1954.
[83] K. W. Wagner, "Zur theorie der unvollkommenen dielektrika," AnP, vol. 345, no. 5, pp. 817-855, 1913.
[84] C. Koops, "On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies," Phys. Rev., vol. 83, no. 1, p. 121, 1951.
[85] D. Agrawal, "Relaxor ferroelectric materials," Asian Journal of Physics, vol. 6, pp. 108-114, 1997.
[86] M. El Hiti, "Dielectric behavior and ac electrical conductivity of Zn-substituted Ni Mg ferrites," J. Magn. Magn. Mater., vol. 164, no. 1-2, pp. 187-196, 1996.
[87] K. Patankar, S. Joshi, and B. Chougule, "Dielectric behaviour in magnetoelectric composites," Phys. Lett. A, vol. 346, no. 5-6, pp. 337-341, 2005.
[88] S. Lopatin, I. Lopatina, and I. Lisnevskaya, "Magnetoelectric PZT/ferrite composite material," Fer, vol. 162, no. 1, pp. 63-68, 1994.
[89] T. G. Lupeiko, I. B. Lopatina, I. V. Kozyrev, and L. A. Derbaremdiker, "Electrophysical and Magnetoelectric Properties of Ceramic Materials of the Type Piezoelectric-Ferrite," (in English), Inorg. Mater., vol. 28, no. 3, pp. 481-485, Mar 1992.
[90] H. Schmid, "Magnetic ferroelectric materials," Bull. Mater. Sci., vol. 17, no. 7, pp. 1411-1414, 1994.
[91] H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, "Status and perspectives of multiferroic magnetoelectric composite materials and applications," in Actuators, 2016, vol. 5, no. 1: Multidisciplinary Digital Publishing Institute, p. 9.
[92] S. Mandal, G. Sreenivasulu, V. Petrov, and G. Srinivasan, "Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics," Appl. Phys. Lett., vol. 96, no. 19, p. 192502, 2010.
[93] E. V. Ramana, F. Figueiras, M. P. Graca, and M. A. Valente, "Observation of magnetoelectric coupling and local piezoresponse in modified (Na0.5Bi0.5)TiO3-BaTiO3-CoFe2O4 lead-free composites," Dalton Trans, vol. 43, no. 26, pp. 9934-43, Jul 14 2014.
[94] M. Kumari, C. Prakash, and R. Chatterjee, "Room temperature large self-biased magnetoelectric effect in non-lead based piezoelectric and magnetostrictive (0−3) particulate composite system," J. Magn. Magn. Mater., vol. 429, pp. 60-64, 2017.
[95] H. Yang, G. Zhang, G. Hai, and X. Xiang, "Simultaneous enhancement of electrical and magnetoelectric effects in BaTiO3–Bi0.5Na0.5TiO3/CoFe2O4 laminate composites," J. Alloys Compd., vol. 646, pp. 1104-1108, 2015.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw