進階搜尋


下載電子全文  
系統識別號 U0026-1308202010524700
論文名稱(中文) 虛擬架構進行下的控制論自適應設計- 以諧波幾何空間為例
論文名稱(英文) Cybernetic Adaptation Design of Harmonic Geometric Space thru Virtual Framework
校院名稱 成功大學
系所名稱(中) 建築學系
系所名稱(英) Department of Architecture
學年度 108
學期 2
出版年 109
研究生(中文) 鄭智元
研究生(英文) Chih-Yuan Cheng
學號 N76061026
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 指導教授-柳川肯
口試委員-沈揚庭
口試委員-曾令理
中文關鍵字 控制論  自適應設計  腦波圖  腦機介面  被動意識設計 
英文關鍵字 Cybernetics  Adaptive Design  Electroencephalography  Brain-Computer Interface  Passive Consciousness Design 
學科別分類
中文摘要 建築師為人類體驗提供背景的環境(空間)的設計具有長久的發展,但在神經科學尚未被研究前,人們對空間塑造身體經驗中的作用了解並不多,建築師往往只能透過個人偏好及經驗去設計空間。隨著神經科學的發展及非侵入式的腦波設備出現,EEG( 腦電圖) 和BCI( 腦機介面) 進入了消費市場,使得像建築師等不是神經科學領域的人有機會體驗到腦波控制和互動,設計師能更主動參與大腦和空間的訊息交匯。
  本研究目標在於利用控制論的架構基於腦波建立新的設計探索方式,而建立的空間會適應於人當下的認知反應,以具有能量性的諧波幾何空間為實驗範例。在Norbert Wiener 提出的控制論中,將空間帶給人的反應回饋至空間變化並反覆對話,研究上將使用非侵入式腦機介面收集使用者於諧波幾何空間中的腦波數據,分析數據內的頻域特徵,透過VR 以虛擬環境作為呈現媒介,直接的展現及時狀況。藉由此方法回應Gorden Pask 認為未來建築可以因應環境,從而建立自己的意義,使人們可以參與所屬空間的一種方式。設計結果建立了虛擬自適應的環境,測試了7 組受試者,藉由問卷與系統的回饋,比對主動認知與被動認知的對應性,應證了過往的身體經驗,形塑了每個人的差異及感受,也傳達了本設計理念透過人機交互產生出來的結果,建立一種新的設計探索方式。
英文摘要 The design of the environment (space), in which the role of the architect is to provide context for human experience, has for generations been the primary mode of design practice. Before the advent of neuroscience and its subsequent consideration in the field of architectural design, designers could not have a clear understanding about the role of space in shaping the body experience. Architects often relied solely on personal preference, building experience and typological/structural necessity to make spatial design decisions. Through the advancement of neuroscience research and availability of monitoring tools such as non-invasive brainwave devices, EEG (Electroencephalography) and BCI (Brain Computer Interface), designers and architects, individuals not specializing in the field of neuroscience research, now have the opportunity to utilize brain wave control and interaction as a means to more actively and objectively participate in the exchange of information between the brain and environmental space.
The objective of this research is to develop a cybernetic framework that can provide architectural designers new tools and methods to approach space design based on human cognition. Specifically, the experimental setup in this research focuses on the generation of virtual spaces,
using energy harmonic geometry, that reacts in real-time to human cognition. Based on the cybernetic concept proposed by Norbert Wiener, the spatial response, elicited from human cognition, is fed into a looping framework generating further spatial transformation, until a predetermined cognitive condition is met. The research experiment uses a non-invasive brain-computer interface to collect users' brainwave patterns, convert collected patterns into harmonic geometric space and analyze the collected data. Frequency domain features, in the Virtual Reality (VR) environment, are used as the presentation medium to create an immersive real-time virtual environment for test subjects. This report includes the development process of the cybernetic framework, the Virtual Adaptive Environment (VAE) simulation apparatus as well as an analysis of experimental data collected from seven test subject groups. While the results gathered from the user data in this research suggests that little correlation exists between active and passive cognitive response in harmonic space environments, the success of the VAE simulation apparatus demonstrates great potential
for further experimentation and application in design exploration, addressing Gorden Pask's belief that buildings in the future should respond to the environment, establish their own meaning and allow people to actively participate the transformation of their own space.
論文目次 一. 緒論 --- 1
1-1 研究動機 --- 1
1-1-1 意識延伸 --- 1
1-1-2 互動建築 --- 3
1-2 研究目標 --- 4
1-3 研究架構 --- 5

二. 文獻探討 --- 6
2-1 神經科學在建築上的應用 --- 7
2-1-1 控制論(Cybernetics) --- 8
2-1-2 自適應系統(Adaptive Systems) --- 12
2-2 建築心理學  --- 15
2-2-1 諧波幾何學(Harmonic geometry) --- 17
2-3 腦波 Brainwave --- 20
2-3-1 腦波分類 --- 20
2-3-2 腦機介面 (Brain-Computer Interface,BCI) --- 22
2-3-3 腦波干擾 --- 23
2-4 案例 --- 24
2-5 小結 --- 26

三. 腦波數值處理及虛擬環境建構 --- 27
3-1 設計步驟 --- 29
3-2 實驗設備/ 軟硬體 --- 30
3-3 腦波數據處理 --- 32
3-4 步驟說明 --- 34
3-4-1 現實世界進入虛擬空間 --- 34
3-4-2 模擬環境 --- 35
3-5 小結 --- 37

四. 腦波數值分類及設計驗證 --- 38
4-1 數據收集 --- 38
4-1-1 分類原則 --- 38
4-1-2 閥值訂定 --- 42
4-2 外在刺激 --- 48
4-3 主動認知與被動認知 --- 49
4-4 設計驗證 --- 50
4-5 實驗結果認知比對 --- 58

五. 結論 --- 62
5-1 研究成果 --- 62
5-2 研究貢獻 --- 63
5-3 研究限制 --- 65
5-4 未來可能的研究方向 --- 66

文獻 --- 67
圖資來源 --- 69
附錄 --- 71
參考文獻 Atasoy, S., Donnelly, I., & Pearson, J. (2016). Human brain networks function in connectome-specific harmonic waves. Nature Communications, 7(1). doi:10.1038/ncomms10340

Bachelard, G. (2014). The poetics of space. Boston, MA: Beacon Press Bird, Jon, and Ezequiel Di Paolo. “Gordon Pask His Maverick Machines.” The Mechanical Mind in History, Aug. 2008, pp. 185–211., doi:10.7551/mitpre ss/9780262083775.003.0008.

Bloomer, K. C., Moore, C. W., & Yudell, R. J. (1979). Body, memory, and
architecture. Yale University Press.
Campbell-Dollaghan, K. (2013). Hacked Brainwave Headset Lets You Control ArchitecturebyThinking.[online]Gizmodo.com.Availableat:http://gizmodo.com/hacked-brainwave-headset-lets-you-control-architecture-508883130 [Accessed 20 May 2013].

Chang, J. (2016). Oriental systems literature. Lulu.com.

Claypool, M., (2020).The Digital in Architecture: Then, Now and in the Future.(2020, January 9). Retrieved from https://space10.com/project/digital-inarchitecture/

Dubberly, Hugh, and Paul Pangaro. “Cybernetics and Service‐Craft: Language for Behavior‐Focused Design.” Kybernetes, vol. 36, no. 9/10, 2007, pp. 1301– 1317., doi:10.1108/03684920710827319.

Haill, L. , Sam Wiehl, S., (2017). “PZYK SKAN – EEG Controlled Sound and Visuals -VDMX - MAC VJ SOFTWARE.” VDMX, VDMX - MAC VJ SOFTWARE, vdmx.vidvox.net/blog/pzyk-skan-eeg-controlled-visuals.

Lehar, S. (2003). Directional Harmonic Theory: A Computational Gestalt Model to Account for Illusory Contour and Vertex Formation. Perception, 32(4), 423-448.doi:10.1068/p5011

McLuhan, M. (1973). Understanding media: the extensions of man. London:Abacus.

Pask, G. (1976). Conversation, cognition and learning: A cybernetic theory and methodology. Elsevier.

Price, C., & Littlewood, J. (1968). The Fun Palace. The Drama Review: TDR, 12(3), 127. doi: 10.2307/1144360

Shemesh, Avishag, et al. “Affective Response to Architecture – Investigating Human Reaction to Spaces with Different Geometry.” Architectural Science Review, vol. 60, no. 2, 2016, pp. 116–125., doi:10.1080/00038628.2016.1266597.

Semertzidis, N. A., Sargeant, B., Dwyer, J., Mueller, F. F., & Zambetta, F. (2019). Towards Understanding the Design of Positive Pre-sleep Through a Neurofeedback Artistic Experience. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI '19. doi:10.1145/3290605.3300804

Tan, D. and Nijholt, A. (2010). Brain-computer interfaces. London: Springe

Vijayalakshmi K, Mamatha B. V, Tanya Susan Mathews, Yashashwini Nagaraj, Karthika Kumaran. “Analysis of Neuro Cognitive Effects on Meditation.” International Journal of Computer Applications, vol. 36, Dec. 2011, doi:10.5120/4453-6232.

成功大學心理系暨認知科學研究所 .(2009). “電生理方法簡介.”
http://140.116.183.157/CMethodIntroduction.html

服務科學實驗室 .(2016). “簡述八種腦波波段.”balabs.nfu.edu.tw/servicescience/2016/04/10/%E7%B0%A1%E8%BF%B0%E5%85%AB%E5%80%8B%E8%85%A6%E6%B3%A2%E6%B3%A2%E6%AE%B5/.

徐聖修.(2014). “腦機介面 (Brain-Computer Interface) 專題 ( 上).” INVESTIGATOR, , investigatortw.wordpress.com/2014/07/06/-brain-computer-interface- 專題- 上

程正孚.(2017). “談VR/AR 的演進.”臺灣電信月刊.

謝豐舟.(2009).“閒話腦神經科學:普羅大眾漫遊腦科學殿堂的敲門磚.”國立臺灣大學出版中心.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw