進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1308202009344300
論文名稱(中文) 結合感應式與電容式無線電能傳輸之雙環同軸型耦合結構研究
論文名稱(英文) Study on Dual-Ring Coaxial Type Coupled Structure with Inductive and Capacitive Combined Wireless Power Transfer
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 曾傳勳
研究生(英文) Chuan-Shiun Tzeng
學號 N26071136
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 召集委員-林法正
口試委員-羅國原
口試委員-沈紘宇
指導教授-李嘉猷
中文關鍵字 無線電能傳輸  雙環同軸型  感應式與電容式 
英文關鍵字 wireless power transfer  dual-ring coaxial type  inductive and capacitive combined 
學科別分類
中文摘要 本論文旨就結合感應式與電容式無線電能傳輸技術,提出一對稱雙環同軸型線圈耦合結構,輔以電磁場模擬軟體分析饋電側與受電側間耦合情況,決定較為適當的耦合結構並進行數學建模。利用30 kHz電源驅動內、外環線圈,發射磁場進行感應式電能傳輸;利用300 kHz電源載於耦合結構的內、外環間,於相對應的環間產生位移電流,進行電容式電能傳輸。考量系統複雜性與效率,採用串聯-串聯諧振架構與雙邊L型LC補償電路。傳輸距離為6公分並且精準對位時,整體系統最大傳輸功率為76.26 W,最大傳輸效率為62.2%,並且當感應式與電容式同時存在時,可以容許整體結構尺寸之33%水平偏移並且維持約60%的傳輸效率。
英文摘要 This thesis is aimed at the combination of inductive and capacitive power transfer. A symmetrical coaxial dual-ring type coupled structure was proposed. Electromagnetic field simulation software was used to determine the more appropriate structure and analyze the coupling between TX and RX. Moreover, the mathematical model was constructed. The inner and outer coils were driven by 30 kHz power source for inductive power transmission. At the same time, 300 kHz power source was carried between the inner and outer coils to generate displacement current for capacitive power transmission. Considering the complexity and efficiency of the system, series-series resonance circuits and L-shaped double-sided LC compensation circuits were used. When the transmission distance is 6 cm and well-alignmented, the maximum transmission power of the overall system is 76.26 W and the maximum transmission efficiency is 62.2%. Furthermore, the efficiency can be maintained about 60% with horizontal misalignment 33% of the overall structure size.
論文目次 中文摘要 I
英文摘要 II
英文延伸摘要 III
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 2
1-3 研究方法 7
1-4 論文大綱 8
第二章 非接觸式電能傳輸原理與特性 9
2-1 前言 9
2-2 電磁感應基本原理 9
2-3 感應線圈之非理想效應 13
2-3-1 集膚效應 13
2-3-2 近接效應 16
2-4 感應耦合結構等效模型 17
2-5 非接觸式感應耦合架構分析 21
2-5-1 雙線圈式感應耦合架構 21
2-5-2 三線圈式共振耦合架構 23
2-5-3 四線圈式感應耦合架構 24
2-6 電容式耦合架構 25
2-7 系統整體架構 27
第三章 混合式耦合結構分析與研製 28
3-1 前言 28
3-2 激勵電源架構 28
3-3 混合式等效電路模型分析 30
3-3-1 饋電側諧振分析 30
3-3-2 受電側諧振分析 33
3-3-3 傳輸效率與功率分析 37
3-4 感應耦合結構模擬與分析 41
3-5 線材選擇與線圈繞製 44
第四章 非接觸式電能傳輸系統硬體電路 46
4-1 前言 46
4-2 系統整體電路架構 46
4-3 饋電側電路架構 47
4-3-1 全橋諧振變流器分析 47
4-3-2 全橋諧振變流器驅動電路 54
4-4 受電側電路架構 56
4-5 混合式非接觸電能傳輸系統設計流程 57
第五章 系統模擬與實驗結果 60
5-1 前言 60
5-2 混合式結構電能傳輸架模擬 60
5-3 系統參數與硬體電路 65
5-4 實驗波形量測 68
5-5 實驗數據結果與討論 71
第六章 結論與進一步研究方向 77
6-1 結論 77
6-2 進一步研究方向 78
參考文獻 79
參考文獻 [1] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on contact-less power transmission system for the high-speed train,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
[2] J. Huh, S. Lee, C. Park, G. H. Cho, and C. T. Rim, “High performance inductive power transfer system with narrow rail width for on-line electric vehicles,” in Proc. IEEE ECCE, 2010, pp. 647-651.
[3] C. S. Lin, S. G. Lin, C. F. Chang, H. H. Li, and T. R. Chen, “Model of contactless power transfer system for linear track,” in Proc. IEEE PEDS, 2010, pp. 1075-1079.
[4] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for maglev applications,” in Proc. IEEE IAS, 2002, pp. 1586-1591.
[5] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC, 2005, pp. 1133-1136.
[6] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[7] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[8] P. Sergeant and A. V. D. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no. 1, pp. 1-7, 2008.
[9] T. Gerrits, D. C. J. Krop, L. Encica, and E. A. Lomonova, “Development of a linear position independent inductive energy transfer system,” in Proc. IEEE International Electric Machines & Drives Conference, 2011, pp. 1445-1449.
[10] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with universal inductive interface,” in Proc. IEEE Power Conversion Conference, 2002, pp. 227-232.
[11] M. Mochizuki et al., “Development of seafloor geodetic observation system based on AUV and submarine cable technologies,” in Proc. IEEE Oceans, 2010, pp. 1-4.
[12] J. Achterberg, E. A. Lomonova, and J. d. Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, May 2008.
[13] S.Y.R. Hui and W.W.C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[14] P. Raval, D. Kacprzak, and A. P. Hu, “A wireless power transfer system for low power electronics charging applications,” in Proc. IEEE ICIEA, 2011, pp. 520-525.
[15] W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sep. 2011.
[16] Y. You, B. H. Soong, S. Ramachandran, and W. Liu, “Palm size charging platform with uniform wireless power transfer,” in Proc. IEEE ICARCV, 2010, pp. 85-89.
[17] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[18] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE NEMS, 2010, pp. 604-647.
[19] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transacutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
[20] B. Gu, J. S. Lai, N. Kees, and C. Zheng, “Hybrid-switching full-bridge dc–dc converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1132-1144, Mar. 2013.
[21] Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. IEE ECCE ASIA, 2010, pp. 2931-2934.
[22] “Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology,” SAE International, U. S. A.[Online]. Available: https://www.sae.org/standards/content/j2954_201711/.
[23] H. Matsumoto et al., “Trifoliate three-phase contactless power transformer in case of winding-alignment,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 53-62, Jan. 2014.
[24] H. Matsumoto et al., “Comparison of characteristics on planar contactless power transfer system,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[25] A. Kur, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83-86, July 2007.
[26] A. Karalis, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple device,” Appl. Phys. Lett., vol. 96, no. 4, p. 044102, Jan. 2010.
[27] R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient weakly-radiative wireless energy transfer: an EIT-like approach,” Anm. Phys., vol. 324, no. 8, pp. 1783-1795, Aug. 2009.
[28] “DIGITIMES智慧應用-從手機到電動車 無線充電跨大應用領域,” [Online]. Available:
https://www.digitimes.com.tw/iot/article.asp?cat=158&id=0000565061_UKBLLWNP70F0WO0TXB9NS(Aug. 1, 2019).
[29] F. Lu, H. Zhang, H. Hofmann, and C. C. Mi, “An inductive and capacitive combined wireless power transfer system with LC compensated topology,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8471–8482, Dec. 2016.
[30] F. Lu, H. Zhang, H. Hofmann, and C. C. Mi, “A inductive and capacitive integrated coupler and its LCL compensation circuit design for wireless power transfer,” IEEE Trans. Ind. Appl., vol.53, no. 5, pp. 4903-4913, Sep. 2017.
[31] H. Zhang, F. Lu, H. Hofmann, and W. Liu, and C. C. Mi, “Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 665-675, Jan. 2018.
[32] F. Lu, H. Zhang, H. Hofmann, and C. Mi, “A double-side LCLC-compensated capacitive power transfer system for electric vehicle charging,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6011-6014, Nov. 2015.
[33] H. Zhang, F. Lu, H. Hofmann, W. Liu, and C. C. Mi, “A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8541-8551, Dec. 2016.
[34] F. Lu, H. Zhang, H. Hofmann, C. C. Mi, “A double-side LC-compensation circuit for loosely coupled capacitive power transfer,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1633-1643, Feb. 2018.
[35] F. Lu, H. Zhang, and C. Mi, “A two-plate capacitive wireless power transfer system for electric vehicle charging application,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 964-969, Feb. 2018.
[36] H. Zhang and F. Lu, “A improved design methodology of the double-side LC-compensated CPT system considering the inductance detuning,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11396-11406, Nov. 2019.
[37] X. Chen, S. Yu, S. Song, R. T. H. Li., X. Yang, and Z. Zhang, “Hybrid coupler for 6.78MHz desktop wireless power transfer applications with stable open-loop gain,” IET Power Electronics, vol. 12, no. 10, pp. 2642-2649, Aug. 2019.
[38] X. Li, C. Tang, X. Dai, P. Deng, and Y. Su, “An inductive and capacitive combined parallel transmission of power and data for wireless power transfer systems,” IEEE Trans. Power Electron, vol. 33, no. 6, pp. 4980-4991, Jun. 2018.
[39] S. Cheon, Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Zyung, “Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906-2914, Jul. 2011.
[40] S. Moon, B. C. Kim, S. Y. Cho, C. H. Ahn, and G. W. Moon, “Analysis and design of a wireless power transfer system with an intermediate coil or high efficiency,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5861-5870, Nov. 2014.
[41] J. Zhang, X. Yuan, and C. Wang, “A study of three-coil magnetically coupled resonators for wireless power transfer,” in Proc. IEEE Int. Wireless Symp., Mar. 2015, pp. 1-4.
[42] Y. Zhang, T. Lu, and Z. Zhao, “Reducing the impact of source internal resistance by source coil in resonant wireless power transfer,” in Proc. IEEE ECCE, Sep. 2014, pp. 845-850.
[43] W. Zhong, C. Zhang, X. Liu, and S. Y. R. Hui, “A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 933-942, Feb. 2015.
[44] J. Zhang, X. Yuan, C. Wang, and Y. He, “Comparative analysis of two-coil and three-coil structures for wireless power transfer,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341-352, Jan. 2017.
[45] M. Kiani, U.-M. Jow, and M. Ghovanloo, “Design and optimization of a 3-coil inductive link for efficient wireless power transmission,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 579-591, Dec. 2011.
[46] S. Huang, Z. Li, Y. Li, X. Yuan, and S. Cheng, “A comparative study between novel and conventional four-resonator coil structures in wireless power transfer,” IEEE Trans. Magn., vol. 50, no. 11, Nov. 2014.
[47] Y. Zhang, Z. Zhao, and T. Lu, “Quantitative analysis of system efficiency and output power of four-coil resonant wireless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 184-190, Mar. 2015.
[48] 賴景明,應用四線圈多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014年。
[49] 陳揚,四線圈式多環同軸型無線電能傳輸系統之匹配阻抗特性研究,國立成功大學電機工程學系碩士論文,2015年。
[50] 林奕維,應用四線圈式共振結構於大間隙非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2016年。
[51] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, Jul. 2009.
[52] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Feb. 2011.
[53] W. Q. Niu, J. X. Chu, W. Gu, and A. D. Shen, “Exact analysis of frequency splitting phenomena of contactless power transfer systems,” IEEE Trans. Circuits Syst. I., vol. 60, no. 6, pp. 1670-1677, Nov. 2013.
[54] Y. Zhang, Z. Zhao, and K. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436-2445, Jul. 2014.
[55] UCC3895 Data Sheet, Texas Instruments Inc., 2013.
[56] IR2110 Data Sheet, International Rectifier Inc., 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw