進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1308202009192000
論文名稱(中文) 具改良E型雙槽口電能拾取器之非接觸式條帶狀感應供電軌道系統
論文名稱(英文) Contactless Strip-Type Inductive Power Track System with Improved E-Shape Dual-Slot Power-Pickup
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 温宗庭
研究生(英文) Tsung-Ting Wen
學號 N26074320
學位類別 碩士
語文別 中文
論文頁數 101頁
口試委員 召集委員-林法正
口試委員-陳建富
口試委員-梁從主
指導教授-李嘉猷
中文關鍵字 線型感應供電軌道  條帶狀感應供電軌道  非接觸式電能傳輸 
英文關鍵字 linear inductive power track  strip-type inductive power track  contactless power transfer 
學科別分類
中文摘要 本論文針對工廠自動化生產線常用之線型感應供電軌道,研製用於電動運載車之非接觸式條帶狀感應供電軌道,論文中所提出條帶狀感應供電軌道之自感,在相同軌道長度下與線型感應供電軌道相比來得更高,因此在饋入相同的激勵電流下,能有效提升軌道所產生的磁場強度以及磁通密度。針對所提出之條帶狀感應供電軌道系統,以電能拾取器結構封閉性及磁通路徑完整性作為電能拾取器結構設計時重要的考量因素,使電動運載車在移動時可拾取較平穩之電能。接著以理論分析諧振電路架構,以提升感應供電軌道傳輸能力以及傳輸效率。最後經由實驗量測得知,當輸入電壓為155伏特時,系統最高傳輸功率為200.6 W,系統最高傳輸效率為62.4%。
英文摘要 This thesis is aimed to develop a contactless strip-type inductive power supply track for the linear inductive power supply track commonly used in factory automation production lines. The self-inductance of the strip-type inductive power track proposed in the thesis is higher than the linear inductive power track at the same track length. Therefore, under the same excitation current, the magnetic field and magnetic flux density generated by the track can be effectively improved. For the proposed strip-type inductive power supply track system, the closedness of the power pickup structure and the integrity of the magnetic flux path are taken as important considerations in the design of the power pickup structure, so that the electric vehicle can pick up more stable power when moving . Then we theoretically analyzed the structure of the resonant circuit to improve the transmission ability and transmission efficiency of the inductive power track system. Finally, through experimental measurements, when the input voltage is 155 V, the highest transmission power of the system is 200.6 W, and the highest transmission efficiency of the system is 62.4%.
論文目次 中文摘要 I
英文摘要 II
英文延伸摘要 III
誌謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 3
1-3 研究方法 8
1-4 論文大綱 10
第二章 非接觸式感應供電技術原理與特性 11
2-1 前言 11
2-2 非接觸式感應供電技術 11
2-3 感應線圈非理想效應 15
2-3-1 集膚效應 16
2-3-2 近接效應 19
2-4 非接觸式電能拾取器特性 20
2-4-1 電能拾取器 20
2-4-2 磁性材料特性分析 21
2-5 非接觸式感應供電技術耦合原理 25
2-5-1 線型感應供電軌道系統耦合原理 28
2-6 系統整體架構 30
第三章 感應耦合結構模擬及諧振電路分析 32
3-1 前言 32
3-2 感應耦合結構模擬及分析 32
3-2-1 條帶狀感應供電軌道設計 33
3-2-2 軌道線圈磁場模擬及分析 37
3-2-3 電能拾取器磁場模擬及分析 42
3-2-4 電能拾取器結構之磁路分析 48
3-3 諧振電路分析 54
3-3-1 初級側諧振電路分析 55
3-3-2 次級側諧振電路與反射阻抗分析 58
3-3-3 品質因數 61
第四章 條帶狀感應供電軌道系統硬體電路 64
4-1 前言 64
4-2 整體系統電路架構 64
4-3 感應供電軌道激勵源電路 65
4-4 條帶狀感應供電軌道耦合結構製作 68
4-4-1 條帶狀感應供電軌道 71
4-4-2 電能拾取器 73
4-5 電能拾取側電路 74
4-5-1 整流濾波電路 74
4-5-2 降壓式轉換電路 75
4-6 條帶狀感應供電軌道系統設計流程 78
第五章 系統模擬與實驗結果 80
5-1 前言 80
5-2 Simplis電路模擬 80
5-3 系統規格及硬體電路 83
5-4 實驗結果及波形量測 85
5-4-1 降壓式轉換電路量測 85
5-4-2 整體系統量測 87
第六章 結論與未來研究方向 93
6-1 結論 93
6-2 未來研究方向 94
參考文獻 95
參考文獻 [1] Y. Shen and X. Zhao, “Application of real-time multi-task management in automation guided system of tamper machine,” in Proc. Int. Conf. Comput. Sci. Service Syst., 2011, pp. 1130-1133.
[2] D. Roy, A. Krishnamurthy, S. S. Heragu, and C. J. Malmborg, “Blocking effect in warehouse systems with autonomous vehicles,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 439-451, Apr. 2014.
[3] Effenberger, “Inductive energy transfer on the move,” INTIS., Germany, 2014.
[4] J. Liang and Z. Rao, “Research and implementation of visual control technology with AGV,” in Proc. Int. Conf. Elect. Informat. Control Eng., 2011, pp. 1588-1591.
[5] X. Tao, “Local obstacle avoidance planning of logistics system AGV based vector field,” in Proc. Manag. Sci. Ind. Eng., 2011, pp. 1256-1259.
[6] S. Hoshino, J. Ota, A. Shinozaki, and H. Hashimoto, “Hybrid design methodology and cost-effectiveness evaluation of AGV transportation systems,” IEEE Trans. Autom. Sci. Eng., vol. 4, no. 3, pp. 360-372, July 2007.
[7] I. Aydin, M. Karakose, and E. Akin, “A new contactless fault diagnosis approach for pantograph-catenary system,” in Proc. MECHATRONIKA, 2012, pp. 1-6.
[8] K. Azadeh, M. B. M. de Koster, and D. Roy, “Robotized warehouse systems: developments and research opportunities,” SSRN Electron. J., 2017, pp. 1-55.
[9] K. Azadeh, M. B. M. de Koster, and D. Roy, “Robotized and automated warehouse systems: review and recent developments,” Transp. Sci., 2019, pp. 1-61.
[10] X. Yan, S. Wang, Z. S. Ma, and X. Li, “Automatic guided vehicle system based on localization and navigation by ultrasonic and infrared ray,” J. Jilin University Eng. Technol. Edition, vol. 36, no. 2, pp. 242-246, 2006.
[11] B. Luo, T. Long, L. Guo, R. Mai, and Z. He, “Analysis and design of hybrid inductive and capacitive wireless power transfer system,” in Proc. APEC, 2019, pp. 3107- 3110.
[12] H. Zhang, F. Lu, H. Hofmann, and W. Liu, and C. C. Mi, “Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 665-675, Jan. 2018.
[13] E. Abramov, J. M. Alonso, and M. M. Peretz, “Analysis and behavioural modelling of matching networks for resonant-operating capacitive wireless power transfer,” IET Power Electron., vol. 12, no. 10, pp. 2615-2625, Aug. 2019.
[14] J. S. Hu, F. Lu, C. Zhu, C. Y. Cheng, S. L. Chen, T. J. Ren, and C. C. Mi, “Hybrid energy storage system of an electric scooter based on wireless power transfer,” IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 4169-4178, Sep. 2018.
[15] J. Zhang, X. Yuan, C. Wang, and Y. He, “Comparative analysis of two-coil and three-coil structures for wireless power transfer,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341-352, Jan. 2017.
[16] B. Song, J. Shin, S. Lee, S. Shin, Y. Kim, S. Jeon, and G. Jung, “Design of a high power transfer pickup for on-line electric vehicle,” in Proc. IEEE Int. Elect. Vehicle Conf., 2012, pp. 1-4.
[17] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[18] J. T. Boys, G. A. J. Elliot, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
[19] P. Sergeant and A. V. D. Bossche, “Inductive coupler for contactless power transmission,” IET Elect. Power Appl., vol. 2, no. 1, pp. 1-7, Jan. 2008.
[20] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with universal inductive interface,” in Proc. Power Convers. Conf., 1993, pp. 227-232.
[21] Kamen, “Contactless Power System,” Vahle Corp., Germany, Nr. 9d/EN, Nov. 2008.
[22] “IPT charge for electric vehicles,” Conductix-Wampfler delachaux group, Germany, KAT9200-0001-E, 2009.
[23] “Corporate profile,” Daifuku Corp., Japan, CP13E, 2013.
[24] “非接觸供電,” AMIDOF Corp., Taiwan, NCPT, 2005.
[25] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “Analysis and comparison of secondary series-and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2979-2990, June 2014.
[26] J. Hou, Q. Chen, X. Ren, X. Ruan, S. C. Wong, and C. K. Tse, “Precise characteristics analysis of series series-parallel compensated contactless resonant converter,” IEEE J. Emerg. Select. Topics Power Electron., vol. 3, no. 1, pp. 101-110, Mar. 2015.
[27] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Mode-matching technique applied to three-dimensional magnetic field modeling,” IEEE Trans. Magn., vol. 48, no. 11, pp. 3383-3386, Nov. 2012.
[28] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Modeling framework for contactless energy transfer systems for linear actuators,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 391-399, Jan. 2013.
[29] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Comparison of position-independent contactless energy transfer systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 2059-2067, Apr. 2013.
[30] H. Matsumoto, Y. Neba, H. Iura, D. Tsutsumi, K. Ishizaka, and R. Itoh, “Trifoliate three-phase contactless power transformer in case of winding-alignment,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 53-62, Jan. 2014.
[31] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[32] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE Power Electron. Specialists Conf., 2008, pp. 4320-4325.
[33] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC, 2005, pp. 1-4.
[34] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
[35] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boy, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[36] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 6, pp. 148-157, Feb. 2004.
[37] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[38] L. J. Chen, J. T. Boys, and G. A. Covic, “Power management for multiple-pickup IPT systems in materials handling applications,” IEEE J. Emerg. Select. Topics Power Electron., vol. 3, no.1, pp. 163-176, Mar. 2015.
[39] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless power transfer systems for roadway-powered electric vehicles,” IEEE J. Emerg. Select. Topics Power Electron., vol. 3, no. 1, pp. 18-36, Mar. 2015.
[40] N. P. Suh, D. H. Cho, and C. T. Rim, “The development and deployment of on-line electric vehicles (OLEV),” in Proc. ECCE, 2013.
[41] S. Y. Choi, S. W. Lee, E. S. Lee, S. Y. Jeong, B. W. Gu, C. T. Rim, “Self-decoupled dual pick-up coils with large lateral tolerance for roadway powered electric vehicles,” in Proc. IPEC, 2014, pp.1103-1108.
[42] C. Park, S. Lee, G. H. Cho, and C. T. Rim, “Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 817-827, Feb. 2015.
[43] C. Park, S. Lee, G. H. Cho, S. Y. Choi, and C. T. Rim, “Two-dimensional inductive power transfer system for mobile robots using evenly displaced multiple pickups,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 558-565, Jan. 2014.
[44] S. Y. Choi, J. Huh, W. Y. Lee, and C. T. Rim, “Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6406-6420, Dec. 2014.
[45] S. Y. Choi, B. W. Gu, S. W. Lee, W. Y. Lee, J. Huh, and C. T. Rim, “Generalized active EMF cancel methods for wireless electric vehicles,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5770-5783, Nov. 2014.
[46] 張宇誠,具封閉型耦合結構非接觸式感應供電軌道系統之研究,國立成功大學電機工程學系碩士論文,2009年。
[47] 張華敬,電動搬運載具用非接觸式三相線型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2013年。
[48] 張雅婷,電動搬運載具用非接觸式條帶型感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2015年。
[49] 楊昆翰,非接觸式片狀感應供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2014年。
[50] 林采樺,具改良型感應耦合結構之非接觸式條帶狀供電軌道系統,國立成功大學電機工程學系碩士論文,2016年。
[51] 陳奕霖,非接觸式條帶狀感應供電軌道之雙槽口型電能拾取器結構,國立成功大學電機工程學系碩士論文,2017年。
[52] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively coupled power transfer systems,” in Proc. IEE Elect. Power Appl., vol. 147, no. 1, pp. 37-43, Jan. 2000.
[53] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. Int. Conf. Power Syst. Technol., 2000, pp. 79-84.
[54] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, Feb. 1995.
[55] Y. Yugang, Yan Dong, and Fred C. Lee, “A new coupled Inductors design in 2-phase interleaving VRM,” in Proc. IEEE Int. Power Electron. Motion Control Conf., 2009, pp. 344-350.
[56] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995-1002, Jul. 2004.
[57] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. Int. Conf. Power Syst. Technol., 2000, pp. 85-90.
[58] UCC3895 Data Sheet, Texas Instruments Inc., 2013.
[59] TL494 Data Sheet, Texas Instruments Inc., 2014.
[60] IR2117 Data Sheet, International Rectifier Inc., 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw