進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1308201916320200
論文名稱(中文) 磊晶(Sb1-xBix)2Te3/Ni80Fe20之自旋幫浦研究
論文名稱(英文) Spin pumping in epitaxial (Sb1-xBix)2Te3/Ni80Fe20
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 107
學期 2
出版年 108
研究生(中文) 李雅文
研究生(英文) Ya-Wen Li
學號 L26064218
學位類別 碩士
語文別 中文
論文頁數 61頁
口試委員 指導教授-黃榮俊
口試委員-陳宜君
口試委員-林昭吟
中文關鍵字 自旋幫浦  拓樸絕緣體  自旋流轉電流效率  Inverse Edelstein效應 
英文關鍵字 Spin pumping  Topological insulator  spin to charge conversion  Inverse Edelstein effect 
學科別分類
中文摘要 在本實驗中,先利用分子束磊晶系統(Molecular Beam Epitaxy, MBE) 成長良好的(Sb1-xBix)2Te3薄膜,隨著調控MBE的流量比率來成長這個三元的拓樸絕緣體(Topological insulators, TIs)薄膜,再利用脈衝雷射沉積儀(Pulsed Laser Deposition, PLD) 在拓樸層上蓋鎳鐵合金(Ni80Fe20, Py)層形成雙層結構,並在室溫下將該樣品應用至自旋幫浦系統中,量測其鐵磁共振訊號以及電壓訊號,並計算這個系統的自旋流轉電流的轉換效率,隨著Bi摻雜比例的變化,此拓樸絕緣體的費米能階(Fermi level)位置也會隨之改變,因此實驗中想要探討當費米能階變化時此系統的轉換效率會有什麼改變,而最後結果證實藉由細微地調控TI的費米能階位置會是造成轉換效率最大化的因素。
英文摘要 In this thesis, we use the topological insulator thin films (Sb1-xBix)2Te3 ternary compounds of different Bi-doped ratio and then grow permalloy (Py, Ni80Fe20) on these topological insulators to do the spin pumping experiment at room temperature. By systematically varying x in (Sb1-xBix)2Te3 thin films, the Fermi level position of their electronic band structures will change and can be observed by ARPES. The results show that when the Fermi level closes to Dirac point the spin to charge conversion efficiency, characterized by the inverse Edelstein effect length λIEE, would reach maximum.
論文目次 摘要 I
Abstract II
誌謝 IX
表目錄 XII
圖目錄 XIII
第一章、緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機 11
第二章、相關理論介紹 13
2-1 霍爾效應(Hall effect) 13
2-2 自旋霍爾效應(Spin Hall effect, SHE) 15
2-3 反轉自旋霍爾效應(Inverse spin Hall effect, ISHE) 16
2-4 Edelstein effect 17
2-5 Inverse Edelstein effect 19
2-6 鐵磁共振與自旋幫浦機制(Ferromagnetic resonance and spin pumping mechanism) 20
第三章、儀器介紹 23
3-1 脈衝雷射沉積儀(Pulsed Laser Deposition, PLD) 23
3-2 分子束磊晶系統(Molecular Beam Epitaxy, MBE) 26
3-3 反射高能電子繞射儀(RHEED) 28
3-4 X光薄膜繞射儀(X-Ray Diffractometer) 30
3-4-1 X-Ray Diffraction, XRD 30
3-4-2 X-Ray Reflection, XRR 31
3-5 角解析光電子能譜(Angle Resolved Photoemission Spectroscopy, ARPES) [25] 32
3-6 四點電阻量測(4-points probe method) 34
3-7 自旋幫浦系統(Spin pumping system) 35
第四章、實驗流程 37
4-1 樣品製備 37
4-1-1基板處理 37
4-1-2薄膜成長 37
4-2 自旋幫浦系統量測及數據分析 39
4-2-1自旋幫浦電壓及鐵磁共振 39
4-2-2四點電阻量測 40
4-2-3原始數據處理 40
4-2-4自旋流轉電流效率計算 44
第五章、實驗結果與討論 46
5-1 薄膜品質確認 46
5-1-1 Sb2Te3摻雜Bi(Bi-doped Sb2Te3, (Sb1-xBix)2Te3) 46
5-1-2鎳鐵合金(Ni80Fe20, Py) 48
5-2 實驗結果 50
5-2-1自旋幫浦電壓訊號 50
5-2-2 自旋流轉電流轉換效率(Spin-to-charge conversion efficiency) 52
5-2-3 轉換效率與(Sb1-xBix)2Te3相關特性討論 55
第六章、結論 58
參考文獻 59
參考文獻 [1] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. Piramanayagam, "Spintronics based random access memory: a review," Materials Today, vol. 20, no. 9, pp. 530-548, 2017.
[2] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, "Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect," Applied physics letters, vol. 88, no. 18, p. 182509, 2006.
[3] L. Liu, C.-F. Pai, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, "Spin-torque switching with the giant spin Hall effect of tantalum," Science, vol. 336, no. 6081, pp. 555-558, 2012.
[4] C. R. Ast et al., "Giant spin splitting through surface alloying," Physical Review Letters, vol. 98, no. 18, p. 186807, 2007.
[5] J.-C. Rojas-Sánchez et al., "Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films," Physical review letters, vol. 116, no. 9, p. 096602, 2016.
[6] L. Liu, T. Moriyama, D. Ralph, and R. Buhrman, "Spin-torque ferromagnetic resonance induced by the spin Hall effect," Physical review letters, vol. 106, no. 3, p. 036601, 2011.
[7] N. Vlietstra, J. Shan, B. Van Wees, M. Isasa, F. Casanova, and J. B. Youssef, "Simultaneous detection of the spin-Hall magnetoresistance and the spin-Seebeck effect in platinum and tantalum on yttrium iron garnet," Physical Review B, vol. 90, no. 17, p. 174436, 2014.
[8] A. Oiwa, Y. Mitsumori, R. Moriya, T. Słupinski, and H. Munekata, "Effect of Optical Spin Injection on Ferromagnetically Coupled Mn Spins in the III-V Magnetic Alloy Semiconductor (G a, M n) As," Physical review letters, vol. 88, no. 13, p. 137202, 2002.
[9] J. Zhang et al., "Band structure engineering in (Bi 1− x Sb x) 2 Te 3 ternary topological insulators," Nature communications, vol. 2, p. 574, 2011.
[10] H. Wang et al., "Surface-state-dominated spin-charge current conversion in topological-insulator–ferromagnetic-insulator heterostructures," Physical review letters, vol. 117, no. 7, p. 076601, 2016.
[11] K. Kondou et al., "Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators," Nature Physics, vol. 12, no. 11, p. 1027, 2016.
[12] L. He, X. Kou, and K. L. Wang, "Review of 3D topological insulator thin‐film growth by molecular beam epitaxy and potential applications," physica status solidi (RRL)–Rapid Research Letters, vol. 7, no. 1‐2, pp. 50-63, 2013.
[13] M. Z. Hasan and J. E. Moore, "Three-dimensional topological insulators," Annu. Rev. Condens. Matter Phys., vol. 2, no. 1, pp. 55-78, 2011.
[14] Y. Xia et al., "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface," Nature physics, vol. 5, no. 6, p. 398, 2009.
[15] D. Hsieh et al., "Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi 2 Te 3 and Sb 2 Te 3," Physical review letters, vol. 103, no. 14, p. 146401, 2009.
[16] C. Kane and J. Moore, "Topological insulators," Physics World, vol. 24, no. 02, p. 32, 2011.
[17] Y. Wen-Min, L. Chao-Jing, L. Jian, and L. Yong-Qing, "Electrostatic field effects on three-dimensional topological insulators," Chinese Physics B, vol. 22, no. 9, p. 097202, 2013.
[18] A. Hoffmann, "Spin Hall effects in metals," IEEE transactions on magnetics, vol. 49, no. 10, pp. 5172-5193, 2013.
[19] S. Takahashi and S. Maekawa, "Spin current, spin accumulation and spin Hall effect," Science and Technology of Advanced Materials, vol. 9, no. 1, p. 014105, 2008.
[20] J. Hirsch, "Spin hall effect," Physical Review Letters, vol. 83, no. 9, p. 1834, 1999.
[21] G.-Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, "Intrinsic spin Hall effect in platinum: First-principles calculations," Physical review letters, vol. 100, no. 9, p. 096401, 2008.
[22] A. Barman and J. Sinha, Spin dynamics and damping in ferromagnetic thin films and nanostructures. Springer, 2018.
[23] E. Lesne et al., "Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces," Nature materials, vol. 15, no. 12, p. 1261, 2016.
[24] H. Nakayama et al., "Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni 81 Fe 19/Pt films," Physical Review B, vol. 85, no. 14, p. 144408, 2012.
[25] P.-Y. Chuang, "以角解析光電子能譜術探討新穎拓樸材料晶體與電子結構之物理特性," 成功大學物理學系學位論文, pp. 1-96, 2018.
[26] Y. Xia, Photoemission studies of a new topological insulator class: Experimental discovery of the bismuth-X3 topological insulator class. Princeton University, 2010.
[27] A. Takayama, High-Resolution Spin-Resolved Photoemission Spectrometer and the Rashba Effect in Bismuth Thin Films. Springer, 2014.
[28] 劉芝華, "以自旋幫浦機制探討氧化鋅之自旋擴散長度," 成功大學物理學系學位論文, pp. 1-53, 2016.
[29] S. Pinon et al., "Development of a microsystem based on a microfluidic network to tune and reconfigure RF circuits," Journal of Micromechanics and Microengineering, vol. 22, no. 7, p. 074005, 2012.
[30] M. Jamali et al., "Giant spin pumping and inverse spin Hall effect in the presence of surface and bulk spin− orbit coupling of topological insulator Bi2Se3," Nano letters, vol. 15, no. 10, pp. 7126-7132, 2015.
[31] P. Noel et al., "Highly efficient spin-to-charge current conversion in strained HgTe surface states protected by a HgCdTe layer," Physical review letters, vol. 120, no. 16, p. 167201, 2018.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw