進階搜尋


下載電子全文  
系統識別號 U0026-1308201903180200
論文名稱(中文) 牙植體系統支臺齒與植體介面之生物力學分析
論文名稱(英文) Biomechanics Analysis of Dental Abutment and Implant Interface
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 常閎智
研究生(英文) Hung-Chih Chang
學號 P88011101
學位類別 博士
語文別 英文
論文頁數 82頁
口試委員 指導教授-張志涵
口試委員-王兆祥
口試委員-蘇國誌
口試委員-陳永崇
召集委員-莊淑芬
中文關鍵字 有限元素法  Ankylos植體系統  植體直徑  干涉配合  負載試驗  永久變形 
英文關鍵字 Finite element method  Ankylos implant system  Implant diameter  Press fit  in-vitro experimental test  Permanent deformation 
學科別分類
中文摘要 根據先前關於Ankylos植體系統的臨床資料顯示,相較於直徑4.5mm和5.5mm的植體,支臺齒在配合直徑3.5mm的植體時有明顯較低的失敗率。這樣的結果與普遍在植體系統所認知的機械機制有所不同。根據先前文獻指出,當植體直徑越大時,植體的二次慣性矩就會隨之增加,這樣一來不僅可降低齒槽骨周邊應力之外,還可增加植體系統抗彎曲變形的能力。因此,為了釐清這種植體系統的力學機制與非預期性的斷裂,本研究使用了負載試驗與有限元素法針對該系統進行力學分析並設下假說當植體與支臺齒介面因摩斯錐度而引發干涉現象時,單一規格的支臺齒與大尺寸的植體配合,將可能會增加支臺齒斷裂的機率。
在負載試驗方面,四支Ankylos植體(含支臺齒)被用來進行力學測試。首先利用樣本1來進行靜負載測試以取得該植體系統的極限負載力。其餘三支樣本則進行動態循環負載測試,本研究使用2赫茲的頻率對其餘三支樣本進行一百萬次的動態循環負載測試。在該測試中,最大動態負載是樣本1的極限負載力的25%,而最小動態負載則為最大動態負載的10%。若三支樣本在動態測試中沒有發生斷裂,三支樣本則進行靜負載測試直到樣本斷裂。所有樣本的負載-位移曲線圖和破壞模式都被記錄下來以便後續與有限元素模擬進行驗證。在有限元素模擬方面,本研究利用斷層掃描所取得之二維圖檔進行有限元素的模型重組,模擬總共被分為三個子步進行分析,第一步是在在中央螺絲上施加300牛頓的螺絲預緊力使得支臺齒向下沉入植體並間接造成植體與支臺齒介面產生干涉,第二步是在支臺齒上施加300N之斜向力以模擬咬合受力,第三步則是將第二步負載卸除來觀察該植體系統的永久變形。
在力學試驗結果顯示,所有樣本都因中央螺絲產生斷裂而造成植體系統失效,而植體頸部的張力側也被觀察到了永久變形的現象。除此之外,支臺齒底部在張力側產生了局部變形的現象產生。在模擬結果顯示,當300N咬合力卸載後在植體系統上所產生的永久變形與實驗結果大致相同。大的植體直徑在這種錐形干涉植體系統中仍然為植體系統與骨頭提供良好的機械優勢。造成支臺齒在配合大直徑的植體有較高的斷裂率(臨床報告提及),可能是因為咬合力的大小所造成的破壞而非植體系統設計。在支臺齒與植體產生干涉配合時,植體的所有零件都會因為干涉現象產生預應力,這個植體系統中預應力可能會導致植體系統承受咬合的能力下降。
英文摘要 Dental implant replacement is a common treatment used to restore the edentulous area. To prevent the possible micro-gap between the abutment and implant, Morse taper design has been introduced to generate press fit between the abutment and implant interface. To simplify the surgical and prosthetic procedure, one-size abutment practice has been adopted by dental implant manufacturers. However, a clinical report suggested that the use of one-size conical abutment with a large-diameter implant is associated with the unexpected high failure rate, inconsistent with the general understanding in dental implant mechanics. The objective of this study is to investigate the mechanical behavior underlying the press fit interface and one-size abutment by using the finite element method and in-vitro experimental test. The research hypothesis was that the press fit interface between the abutment and implant increases the failure probability of large-diameter implant in one-size abutment system.
Four Ankylos C type implants, with 3.5 mm implant diameter and 3 mm gingival height abutment, were used in the experimental test. Both dynamic loading and static loading, till fracture, were applied. For the finite element simulation, the models of Ankylos C type system were constructed based on the computed tomography images. Four implant diameters (3.5, 4.5, 5.5, and 7.0 mm) models with the same abutment sizes (gingival height of 3 mm) were created. Bi-linear isotropic hardening plastic model was employed to simulate the permanent (plastic) deformation of the implant system. Three load steps were applied in all simulation models: Load step one: 300 N of bolt pretension to simulate the bolt tightening process; Load step two: an oblique force of 300 N to simulate the occlusion force; Load step three: unload the occlusion force to investigate the permanent deformation.
In the experimental test results, the fracture site of the specimens was located on the abutment-screw-thread. All implant bodies exhibited the permanent deformation on the compression side of the implant neck. A permanent deformation was also observed on the tension side of the abutment bottom. The result of the finite element simulation after unloading, load step three, is general agreement with the experimental outcomes. The use of a large implant size with the conical press fit design provides a mechanical advantage for the implant system and bone structure. The high failure rate in large Ankylos implant system observed in clinical follow-up may due to the large occlusal force, not the implant design. The extra torque load to generate the press fit boundary on the conical interface would generate high stress in implant component which increased the failure potential of the implant system after the occlusal force applied.
論文目次 Abstract I
中文摘要 III
誌謝 V
Contents VII
List of Tables IX
List of Figures X
Chapter 1. Introduction 1
1.1 Two-stage dental implant systems 1
1.2 Failure modes of the implant system 3
1.2.1 Fundamental Mechanical of dental implant systems 3
1.2.2 Osseo-integration failure 4
1.2.3 Peri-implant marginal bone loss 5
1.2.4 Component fracture of the dental implant system 7
1.2.5 Abutment screw loosening 10
1.2.6 Press fit design in the abutment–implant interface 11
1.3 Clinical review of Ankylos implant system 14
1.4 Motivation and objectives 16
Chapter 2. Materials and Methods 18
2.1 In-vitro experimental test 18
2.1.1 Specimen preparation 18
2.1.2 Loading test and data measurement 21
2.2 Finite element simulation 22
Chapter 3. Results 29
3.1 Result of the in-vitro experimental test 29
3.2 Result of the FE simulation 33
3.2.1 Result of load step one 33
3.2.2 Results of load step two and three 34
Chapter 4. Discussion 44
4.1 Validation of the FE model 44
4.2 Experimental test 49
4.3 FE simulation 51
4.4 Limitations 56
Chapter 5. Conclusions 57
References 59
Appendix 68
Appendix A: Cold welding simulation 68
Appendix B: Convergence test for the press fit model 80
參考文獻 1.Yao KT, Kao HC, Cheng CK, Fang HW, Yip SW et al. The effect of clockwise and counterclockwise twisting moments on abutment screw loosening. Clin Oral Implant Res 2012;23:1–6.
2.Akour SN, Fayyad MA, Nayfeh JF. Finite element analyses of two antirotational designs of implant fixtures. Implant Dent 2005;14:77–81.
3.Lang LA, Wang RF, May KB. The influence of abutment screw tightening on screw joint configuration. J Prosthet Dent 2002;87:74-9.
4.Binon PP. The effect of implant/abutment hexagonal misfit on screw joint stability. Int J Prosthodont 1996;9:149-60.
5.Binon PP, McHugh MJ. The effect of eliminating implant/abutment rotational misfit on screw joint stability. Int J Prosthodont 1996;9:511-9.
6.Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent. 2002;88:604–610
7.Feitosa PC, de Lima AP, Silva-Concílio LR, Brandt WC, Neves AC. Stability of external and internal implant connections after a fatigue test. Eur J Dent 2013;7:267–71.
8.Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10:326-34.
9.Suzuki H, Hata Y, Watanabe F. Implant fracture under dynamic fatigue loading: influence of embedded angle and depth of implant. Odontology 2016;104:357-62.
10.Wang CF, Huang HL, Lin DJ, Shen YW, Fuh LJ, Hsu JT. Comparisons of maximum deformation and failure forces at the implant–abutment interface of titanium implants between titanium-alloy and zirconia abutments with two levels of marginal bone loss. Biomed Eng Online 2013;12:45.
11.Hsu J, Fuh L, Lin D, Shen Y, Huang H. Bone strain and interfacial sliding analyses of platform switching and implant diameter on an immediately loaded implant: experimental and three-dimensional finite element analyses. J Periodontol 2009;80:1125-32.
12.Misch CE. Dental implant prosthetics. 2nd ed. St. Louis, MO: Elsevier Health Sciences; 2014. P. 294-314.
13.Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent 2008;100:422-31.
14.Himmlová L, Dostálová T, Kácovský A, Konvicková S. Influence of implant length, diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004;91:20-5.
15.Boggan RS, Strong JT, Misch CE, Bidez MW. Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. J Prosthet Dent 1999;82:436-40.
16.Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J et al. Intra-osseous anchorage of dental prostheses: I. Experimental Studies. Scand J Plast Reconstr Surg 1969;3:81-100.
17.Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70.
18.Nerad JA, Carter KD, LaVelle WE, Fyler A, Brånemark PI. The osseointegration technique for the rehabilitation of the exenterated orbit. Arch Ophthalmol 1991;109:1032-8.
19.Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J. Predicting osseointegration by means of implant primary stability. Clin Oral Implants Res 2004;15:520-8.
20.Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci 1998;106:527-51.
21.Saadoun AP, Le Gall M, Kricheck M. Microbial infections and occlusal overload: causes of failure in osseointegrated implants. Pract Periodontics Aesthet Dent 1993;5:11-20.
22.Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Optimal implant stabilization in low density bone. Clin Oral Implants Res 2001;12:423-32.
23.Sakka S, Coulthard P. Bone quality: A reality for the process of osseointegration. Implant Dent 2009;18:480-5.
24.Turkyilmaz I, McGlumphy EA. Influence of bone density on implant stability parameters and implant success: A retrospective clinical study. BMC Oral Health 2008;8:1-8.
25.Wang Y, Zhang Y, Miron RJ. Health, Maintenance, and Recovery of Soft Tissues around Implants. Clin Implant Dent Relat Res 2016;18:618-34.
26.Jepsen S, Berglundh T, Genco R, Aass AM, Demirel K et al. Primary prevention of peri-implantitis: managing peri-implant mucositis. J Clin Periodontol 2015;16:152-7.
27.Baggi L, Girolamo M, Mirisola C, Calcaterra R. Microbiological evaluation of bacterial and mycotic seal in implant systems with different implant‐abutment interfaces and closing torque values. Implant Dent 2013;22:344-50.
28.Larrucea C, Jaramillo G, Acevedo A, Larrucea C. Microleakage of the prosthetic abutment/implant interface with internal and external connection: in vitro study. Clin Oral Implants Res 2014;25:1078-83.
29.John V, Shin D, Marlow A, Hamada Y. Peri-Implant Bone Loss and Peri-Implantitis: A Report of Three Cases and Review of the Literature. Case Rep Dent 2016;2491714.
30.Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Periodont Rest Dent 1993;13:409-31.
31.Yao KT, Kao HC, Cheng CK, Fang HW, Huang CH et al. The Potential Risk of Conical Implant-Abutment Connections: The Antirotational Ability of Cowell Implant System. Clin Implant Dent Relat Res 2015;17:1208-16.
32.Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenk RK, et al. Persistent acute inflammation at the implant–abutment interface. J Dent Res 2003;82:232-7.
33.Lopes de Chaves E Mello Dias EC, Sperandio M, Napimoga MH. Association between implant-abutment microgap and implant circularity to bacterial leakage: An in vitro study using tapered connection implants. Int J Oral Maxillofac Implants 2018;33:505-11.
34.Gealh WC, Mazzo V, Barbi F, Camarini ET. Osseointegrated implant fracture: causes and treatment. J Oral Implantol 2011;37:499-503.
35.Luterbacher S, Fourmousis I, Lang NP, Brägger U. Fractured prosthetic abutments in osseointegrated implants: a technical complication to cope with. Clin Oral Implants Res 2000;11:163-70.
36.Walia MS, Arora S, Luthra R, Walia PK. Removal of fractured dental implant screw using a new technique: a case report. J Oral Implantol 2012;38:747-50.
37.Shemtov-Yona K, Rittel D. Fatigue of Dental Implants: Facts and Fallacies. Dent J (Basel). 2016;4:e16.
38.Eckert SE, Meraw SJ, Cal E, Ow RK. Analysis of incidence and associated factors with fractured implants: a retrospective study. Int J Oral Maxillofac Implants 2000;15:662-7.
39.Kim WH, Lairda C. Crack nucleation and stage I propagation in high strain fatigue—II. mechanism. 1978;26:789-99.
40.Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10:326-34.
41.Suzuki H, Hata Y, Watanabe F. Implant fracture under dynamic fatigue loading: influence of embedded angle and depth of implant. Odontology 2016;104:357-62.
42.Wang CF, Huang HL, Lin DJ, Shen YW, Fuh LJ, Hsu JT. Comparisons of maximum deformation and failure forces at the implant–abutment interface of titanium implants between titanium-alloy and zirconia abutments with two levels of marginal bone loss. Biomed Eng Online 2013;12:45.
43.Taira Y, Sawase T. A modified technique for removing a failed abutment screw from an implant with a custom guide tube. J Oral Implantol 2012;38:165-9.
44.Misch CE. Dental implant prosthetics. 2nd ed. St. Louis, MO: Elsevier Health Sciences; 2014:pp.232 and 294-314.
45.Duyck J, Vandamme K. The effect of loading on peri-implant bone: a critical review of the literature. J Oral Rehabil 2014;41:783-94.
46.Gehrke SA, Shibli JA, Aramburú Junior JS, de Val JE, Calvo-Girardo JL, Dedavid BA. Effects of different torque levels on the implant–abutment interface in a conical internal connection. Braz Oral Res 2016;30:e40.
47.Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent 2013;90:121-32.
48.Scacchi M, Merz BR, Schär AR. The development of the ITI dental implant system. Part 2: 1998-2000: steps into the next millennium. Clin Oral Implants Res 2000;11:22-32.
49.Bozkaya D, Müftü S. Mechanics of the tapered interference fit in dental implants. J Biomech 2003;36:1649-58.
50.Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis—a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998;24:80-8.
51.Frisardi G, Barone S, Razionale AV, Paoli A, Frisardi F, Tullio A, et al. Biomechanics of the press fit phenomenon in dental implantology: an image-based finite element analysis. Head Face Med 2012;29:1-9.
52.Krebs M, Schmenger K, Neumann K, Weigl P, Moser W, Nentwig GH. Long-term evaluation of ANKYLOS dental implants, part i: 20-year life table analysis of a longitudinal study of more than 12,500 implants. Clin Implant Dent Relat Res 2015;1:e275-86.
53.Shim HW, Yang BE. Long-term cumulative survival and mechanical complications of single-tooth Ankylos implants: focus on the abutment neck fractures. J Adv Prosthodont 2015;7:423-30.
54.Gealh WC, Mazzo V, Barbi F, Camarini ET. Osseointegrated implant fracture: causes and treatment. J Oral Implantol 2011;37:499-503.
55.Sugiura T, Yamamoto K, Horita S, Murakami K, Tsutsumi S, Kirita T. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis. J Periodontal Implant Sci 2016;46:156-65.
56.Lisiecki A, Piwnik J. Tribological characteristic of titanium alloy surface layers produced by diode laser gas nitriding. Arch Metall Mater 2016;61:543-52.
57.Kitagawa T, Tanimoto Y, Odaki M, Nemoto K, Aida M. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system. J Biomed Mater Res B Appl Biomater 2005;75:457-63.
58.Dittmer S, Dittmer MP, Kohorst P, Jendras M, Borchers L, Stiesch M. Effect of implant-abutment connection design on load bearing capacity and failure mode of implants. J Prosthodont 2011;20:510-6.
59.Park SJ, Lee SW, Leesungbok R, Ahn SJ. Influence of the connection design and titanium grades of the implant complex on resistance under static loading. J Adv Prosthodont 2016;8:388-395.
60.Lu Y, Huang JY, Wang C, Sun S, Lou J. Cold welding of ultrathin gold nanowires. Nat Nanotechnol 2010;5:218-24.
61.Ferguson GS, Chaudhury MK, Sigal GB, Whitesides GM. Contact adhesion of thin gold films on elastomeric supports: Cold welding under ambient conditions. Science 1991;253:776-8.
62.Merstallinger A, Sales M, Semerad E, Dunn BD. Assessment of cold welding between separable contact surfaces due to impact and fretting under vacuum. 1st ed. Noordwijk: ESA Communication Production Office; 2009. p. 1-3.
63.Dibart S, Warbington M, MingFan S, Skobe Z. In vitro evaluation of the implant-abutment bacterial seal: the locking taper system. Int J Oral Maxillofac Implants 2005;20:732-7.
64.Weigl P. New prosthetic restorative features of Ankylos implant system. J Oral Implantol 2004;30:178-88.
65.Romanos GE, Nentwig GH. Single molar replacement with a progressive thread design implant system: a retrospective clinical report. Int J Oral Maxillofac Implants 2000;15:831-6.
66.Blum K, Wiest W, Fella C, Balles A, Dittmann J, Rack A, et al. Fatigue induced changes in conical implant–abutment connections. Dent Mater 2015;31:1415-26.
67.Gil FJ, Herrero-Climent M, La´zaro P, Rios JV. Implant–abutment connections: influence of the designon the microgap and their fatigue and fracture behavior of dental implants. J Mater Sci Mater Med 2014;25:1825-30.
68.Chen JH, Cho SH. An accessory technique for the intraoral removal of a fractured implant abutment screw. J Prosthet Dent 2018;120:812-5.
69.Mizumoto RM, Jamjoom FZ, Yilmaz B. A risk-based decision making tree for managing fractured abutment and prosthetic screws: A systematic review.. J Prosthet Dent 2018;119:552-9.
70.Feitosa PCP, de Lima AP, Silva-Concílio LR, Brandt WC, Neves AC. Stability of external and internal implant connections after a fatigue test. Eur J Dent 2013;7:267-71.
71.Squier RS, Psoter WJ, Taylor TD. Removal torques of conical, tapered implant abutments: the effects of anodization and reduction of surface area. Int J Oral Maxillofac Implants 2002;17:24-7.
72.de Oliveira Silva TS, Mendes Alencar SM, da Silva Valente V, de Moura CDVS. Effect of internal hexagonal index on removal torque and tensile removal force of different Morse taper connection abutments. J Prosthet Dent 2017;117:621-7.
73.Cerutti-Kopplin D, Neto DJR, do Valle AL, Pereira JR. Influence of reverse torque values in abutments with or without internal hexagon indexes. J Prosthet Dent 2014;112:824-7.
74.Aguirrebeitia J, Müftü S, Abasolo M, Vallejo J. Experimental study of the removal force in tapered implant–abutment interfaces: A pilot study. J Prosthet Dent 2014;111:293-300.
75.Pintinha M, Camarini ET, Sábio S, Pereira JR. Effect of mechanical loading on the removal torque of different types of tapered connection abutments for dental implants. J Prosthet Dent 2013;110:383-8.
76.Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent 1999;81:159-66.
77.Eom JW, Lim YJ, Kim MJ, Kwon HB. Three-dimensional finite element analysis of implant-assisted removable partial dentures. J Prosthet Dent 2017;117:735-42.
78.Wang CH, Du JK, Li HY, Chang HC, Chen KK. Factorial analysis of variables influencing mechanical characteristics of a post used to restore a root filled premolar using the finite element stress analysis combined with the Taguchi method. Int Endod J 2016;49:690-9.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw