進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1308201817321400
論文名稱(中文) 由基於鋸齒狀流道的準Ω形模組構成之微混合器中的流體混合數值模擬
論文名稱(英文) Numerical simulation of fluid mixing in micromixers with quasi-omega-shaped modules based on zigzag channels
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 林曉琪
研究生(英文) Siao-Chi Lin
學號 N16054239
學位類別 碩士
語文別 中文
論文頁數 103頁
口試委員 指導教授-吳志陽
口試委員-吳明勳
口試委員-何清政
中文關鍵字 平面蜿蜒流道  流體混合  微流體力學  流體粒子追跡  蒙地卡羅法 
英文關鍵字 planar serpentine channel  mixing  microfluidics  particle tracking  Monte Carlo simulation 
學科別分類
中文摘要 本研究以數值方法比較三種不同幾何形狀之模組形成之二維平面蜿蜒微流道中流體的混合,這三種模組為基於鋸齒狀流道的準Ω形模組、Ω形模組與準方波形模組。網格法在高培克萊特數下,會因數值擴散高估混合度,且無法完全避免,因此本研究以蒙地卡羅法驗證反向粒子追跡綜合近似擴散模式模擬,並以後者之模擬結果討論雷諾數對流體流動與混合影響。模擬結果顯示在低雷諾數時流體混合以分子擴散為主,因模組中心線長度相同,流體在不同形狀模組之蜿蜒流道擴散的時間也大致相同,所得之混合度差異不大;在高雷諾數Re=81下,混合效率因模組幾何外形差異而有所不同,因其混合機制由對流主導,而渦流可拉伸摺疊流體,增加流體交界面之接觸面積,促使混合效率提升。各模組之蜿蜒流道流體混合效果的差異在於其流道結構是否容易引發渦流,準Ω形模組因流道具銳角轉彎較容易引發狄恩與分離渦流,因此以準Ω形模組組成的微混合器有最佳的流體混合結果。
英文摘要 We compare the flow and mixing in planar serpentine micromixers composed of different modules by numerical methods, and the three modules considered are the quasi-omega-shaped modules based on zigzag shaped channels, the omega-shaped modules, the quasi-square-wave-shaped modules. The degrees of mixing obtained by the grid method are overestimated due to numerical diffusion at the high Peclet number. Thus, we use particle-tracking simulation with ADM (approximate diffusion model) to investigate the flow and mixing at different Reynolds numbers. The results obtained by the Monte Carlo method verifies the results of particle-tracking simulation with ADM. The simulation results show that fluid mixing is dominated by molecular diffusion, and the degrees of mixing obtained for different microchannels are nearly identical at lower Reynolds numbers. At high Reynolds number, the flow starts to develop vortices, which stretch and distort the interface between fluid streams to enhance fluid mixing. The serpentine micromixer with the quasi-omega-shaped modules that have sharp bends may induce Dean vortices and separation vortices in the mixing channel, and so the mixing performance of this micromixer is the best among the micromixers considered at Re=81.
論文目次 摘要 i
Extended Abstract ii
致謝 xi
目錄 xii
表目錄 xv
圖目錄 xvi
符號表 xxiv
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-3研究動機 3
1-4 本文架構 4
第二章 流道幾何形狀與數值模擬方法 5
2-1 微混合器之設計 5
2-2 基本假設與統御方程式 6
2-3邊界條件 6
2-4 無因次分析 8
2-4-1無因次化變數 8
2-4-2統御方程式無因次化 9
2-4-3邊界條件無因次化 10
2-5網格法數值模擬 10
2-5-1 CFD-GEOM幾何形狀與網格建立 10
2-5-2 CFD-ACE+模擬運算 11
2-5-3 CFD-VIEW 後處理 11
2-6流體粒子的反向追跡與近似擴散模式 12
2-6-1流體粒子的反向追跡 12
2-6-2近似擴散模式 13
2-7 反向隨機漫步蒙地卡羅之方法模擬 13
2-8混合度 14
第三章 結果與討論 16
3-1 網格法的測試 16
3-1-1 網格法的收斂準則測試 16
3-1-2 網格法的網格大小測試 16
3-2反向追跡與擴散模式目標截面網格數目測試 17
3-3反向隨機漫步蒙地卡羅模擬之驗證 17
3-3-1蒙地卡羅不同隨機數產生器與解析解之比較 17
3-3-2蒙地卡羅方法目標截面粒子數測試 20
3-4 三種模擬方法比較 20
3-5 準 形模組之蜿蜒微流道以不同入口流道注入之混合結果 21
3-6不同雷諾數下流體的流動與混合 21
3-6-1低雷諾數各模組之蜿蜒微流道流體的流動與混合 21
3-6-2高雷諾數各模組之蜿蜒微流道流體的流動與混合 23
3-6-3不同雷諾數下流體的流動與混合 24
3-7不同流道的壓降與混合度 25
3-7-1不同流道隨雷諾數壓降與混合度之關係 25
3-7-2不同數目之流道模組數的出口壓降與混合度 26
第四章 結論與未來展望 27
4-1結論 27
4-2未來展望 27
參考文獻 28
附錄A 粒子追跡之速度內插與近似擴散模式 31
A-1流體粒子之速度內插 31
A-2目標截面之濃度擴散模式 32
參考文獻 [1] A. Manz, N. Graber, and H. M. Windmer, “Miniaturized total chemical analysis system: a novel concept for chemical sensing,” Sensors and Actuators, B: Chemical, vol. 1, no. 1-6, pp. 244-248, 1990.
[2] A. Maha, D. O. Barrett, D. E. Nikitopoulosa, S. A. Soper, and M. C. Murphy, “Simulation and design of micromixers for microfluidic devices,” Proceedings SPIE 5345, Microfluidics, BioMEMS, and Medical Microsystems II, pp. 183-194. San Jose, California, United States, Dec. 23, 2003.
[3] R. Miyake, T. S. Lammerink, M. Elwenspoek, and J. H. Fluitman, “Micro mixer with fast diffusion,” presented at the 6th IEEE International Micro Electro Mechanical Systems Conference (MEMS 93), pp. 248-253. Fort Lauderdale, Florida, United States, Aug. 06, 1993.
[4] D. Gobby, P. Angeli, and A. Gavriilidis, “Mixing characteristics of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, vol. 11, no. 2, pp. 126-132, 2001.
[5] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, “Passive mixing in a three-dimensional serpentine microchannel,” Journal of Microelectromechanical Systems, vol. 9, no. 2, pp. 190-197, 2000.
[6] R. A. Vijayendran, K. M. Motsegood, D. J. Beebe, and D. E. Leckband, “Evalution of a three-dimensional micromixer in a surface-based biosensor,” Langmuir, vol. 19, no. 5, pp. 1824-1828, 2003.
[7] A. D. Strook, S. K. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, vol. 295, pp. 647-651, 2002.
[8] S. H. Wong, P. Bryant, M. Ward, C. Wharton, “Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies,” Sensors and Actuators B: Chemical, vol. 95, no. 1-3, pp. 414-424, 2003.
[9] N. Kockmann, C. Föll, and P. Woias, “Flow regimes and mass transfer characteristics in static micro mixers,” Proceedings of International Society for Optics and Photonics, vol. 4982, pp. 319-330, 2003.
[10] D. Bothe, C. Stemich, and H.-J. Warnecke, “Fluid mixing in a T-shaped micro-mixer,” Chemical Engineering Science, vol. 61, no. 9, pp. 2950-2958, 2006.
[11] F. Jiang, K. S. Drese, S. Hardt, M. Küpper, and F. Schöfeld, “Helical flows and chaotic mixing in curved micro channel,” AIChE Journal, vol. 50, no. 9, pp. 2297-2305, 2004.
[12] S. Hossain, M. A. Ansari, and K. Y. Kim, “Evaluation of the mixing performance of the three passive micromixers,” Chemical Engineering Journal, vol. 150, pp. 492-501, 2009.
[13] M.-Y. Kuo, “A backward random-walk Monte Carlo simulation of liquid mixing in a serpentine microchannel,” M.S. thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2015.
[14] A. A. Al-Halhouli, A. Alshare, M. Mohsen, M. Matar, A. Dietzel, and S. Büttgenbach, “Passive micromixers with interlocking semi-circle and omega-shaped modules: Experiments and simulations,” Micromachines, vol. 6, no. 7, pp. 953-968, 2015.
[15] K.-C. Hsu, “Numerical simulation for mixing of fluids in a serpentine microchannel with Z-type and reversed Z-type modules,” M.S. thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2017.
[16] R.-T. Tsai and C.-Y. Wu, “Multidirectional vortices mixing in three-stream micromixers with two inlets,” Microsystem Technologies, vol. 18, no. 6, pp. 779-786, 2012.
[17] J. D. Hoffman and S. Frankel, Numerical methods for engineers and scientists.
New York, United States : CRC Press, pp. 504-514, 2001.
[18] T. Matsunaga, H. J. Lee, and K. Nishino, “An approach for accurate simulation of liquid mixing in a T-shape micromixer,” Lab on a Chip, vol. 13, no. 8, pp. 1515-1521, 2013.
[19] V. Özceyhan and M. Sen, “Particle-tracking random-walk computation of high-Peclet-number convection,” Numerical Heat Transfer, Part A: Applications, vol. 50, no. 7, pp. 607-622, 2006.
[20] P. Szymczak and A. J. C. Ladd “Boundary conditions for stochastic solutions of the convection-diffusion equation,” Physical Review E, vol. 68, no. 3, pp. 036704, 2003.
[21] C. Galletti, M. Roudgar, E. Brunazzi, and R. Mauri, “Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer, ” Chemical Engineering Science, vol. 185, pp. 300-313, 2012.
[22] S. A. Rani, B. Pitts, and P. S. Steward, “Rapid diffusion of fluorescent tracers into staphylococcus epidermidis biofilms visualized by time lapse microscopy,” Antimicrobial Agents Chemotherapy, vol. 49, no. 2, pp. 728-732, 2005.
[23] T. Matsunaga, K. Shibata, K. Murotani and S. Koshizuka, “Hybrid grid-particle method for fluid mixing simulation,” Computational Particle Mechanics, vol. 2, no. 3, pp. 233-246, 2015.
[24] H. Bockhorn, D. Mewes, W. Peukert, and H. J. Warnecke, Micro and Macro Mixing. Berlin, Germany : Springer, 2010.
[25] Z. Wu, N.-T. Nguyen, and X. Huang, “Nonlinear diffusive mixing in microchannels: theory and experiments,” Journal of Micromechanics and Microengineering, vol. 14, no. 4, pp. 604-611, 2004.
[26] A. Nealen, “An as-short-as-possible introduction to the least squares,weighted least squares and moving least squares methods for scattered data approximation and interpolation,” Technische Universität Darmstadt, Tech. Rep., 2004, URL:http://www.nealen.com/projects.
[27] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the Association for Computing Machinery, vol. 18, no. 9, pp. 509-517, 1975.
[28] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. “An optimal algorithm for approximate nearest neighbor searching fixed dimensions,” Journal of the Association for Computing Machinery, vol. 45, no. 6, pp. 891–923, 1998.
[29] T. Most and C. Bucher, “A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions,” Structural Engineering and Mechanics, vol. 21, no. 3, pp. 315-332, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw