進階搜尋


下載電子全文  
系統識別號 U0026-1308201519321300
論文名稱(中文) 利用穩定鍶同位素探討白楊樹造成之分化及其對環境影響
論文名稱(英文) The Sr isotopic fractionation caused by poplar trees and the implications to the environments
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 103
學期 2
出版年 104
研究生(中文) 江易璇
研究生(英文) Yi-Hsuan Chiang
學號 L46024034
學位類別 碩士
語文別 英文
論文頁數 64頁
口試委員 指導教授-游鎮烽
口試委員-楊懷仁
口試委員-何恭算
中文關鍵字 白楊樹  風化作用  δ88/86Sr  鍶源匯模型 
英文關鍵字 poplar trees  weathering  δ88/86Sr  Sr budget 
學科別分類
中文摘要 87Sr/86Sr 及δ88/86Sr被廣泛用於風化作用的示蹤計。植物位於岩石-大氣-水圈的交界,深受其各交互作用影響,且於研究中指出植物在攝取元素時,會增加周圍風化的速率。但植物造成之87Sr/86Sr分化因過於微小而被忽略。近年來因δ88/86Sr各領域研究應用的蓬勃發展,植物被指出會造成顯著δ88/86Sr分化,顯示其對於風化研究的重要性,但植物與環境間更詳細的交互作用關係,比如在植物體內造成的δ88/86Sr分化,則仍未被詳細研究。本研究欲利用empirical external normalization搭配standard-sample bracketing修正法,修正使用多接收器感應耦合電漿質譜儀量測鍶同位素時所造成的質量偏移,並研究在白楊樹利用鍶元素時所造成之δ88/86Sr同位素分化,並協助我們了解植物在整體鍶循環中所扮演的角色,進一步建立更完整的鍶的源匯模型。在白楊樹中造成δ88/86Sr分化的過程主要有三階段,分別為:根部攝取鍶元素時造成之分化、鍶自根部運輸至莖部時所造成之分化、鍶自莖部運輸至葉的過程中造成之分化。利用公式計算之平均白楊樹δ88/86Sr為-0.18‰,明顯較生長土壤(δ88/86Sr =0.02‰)富集86Sr。根據瑞利分鎦模型模擬出之白楊樹連續取用鍶造成之同位素分化影響,則顯示當白楊樹移除所有溶於水中的鍶元素時,可造成土壤溶液中達2.99‰分化。此模擬結果可再次強調植物為一富集86Sr的儲藏庫,並且在鍶源匯模型中扮演不可或缺的角色。
英文摘要 Triple Strontium (Sr) isotopes have been extensively applied as tracers for weathering processes in the terrestrial environments. Plants located on the of rock-water-soil interface, and have been known to accelerate the weathering rate when they mobilizes metals from soils. Recent studies showed plants may play a non-negligible role in the biogeochemical cycle of strontium using the δ88/86Sr, but the relationship between plants and the environments were still unclear. Here we aim to use δ88/86Sr to demonstrate how plants affect the δ88/86Sr in soil, even evaluate the plant influence to the chemical weathering process in forest systems. The poplar trees that cultivated at the Swiss Federal Research Institute for four months were chosen for the experiments. We used an empirical external normalization (EEN) combined with standard-sample bracketing (SSB) procedures to correct the potential mass drifting during Sr isotopes measurements on multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) . The results allow to identify a three-step Sr isotopic fractionation levels in poplar trees. The first one takes place when Sr entering the root. The second one takes place as Sr transported from root to stems, followed during the Sr translocation from stem to leaves, and δ88/86Sr decreased with height. The average poplar δ88/86Sr value (-0.18‰) showed enrichment of 86Sr compare to the soil solution (δ88/86Sr =0.02‰). According to an estimation using Rayleigh fraction model, poplar trees can produce significant δ88/86Sr fractionation in water which up to 2.99‰ if all the dissolved Sr was removed by the poplar trees. This supported the vegetation is the lighter 86Sr reservoir and likely plays an important role in Sr cycling in terrestrial environments.
論文目次 摘要 I
Abstract II
誌謝 III
List of figures VII
List of tables IX
1.Introduction 1
1.1 Sr stable isotopes 1
1.2 Plants influence to the environments 4
1.3 The aims of this study 9
2.Materials and Methods 11
2.1Materials 11
2.2 Methods 11
2.2.1 Sample digestion method 11
2.2.1.1 Acid-attacked method 12
2.2.1.2 Dry-ashing method 12
2.2.1.3 Microwave-assisted method 12
2.2.2 Chemical purification 13
2.2.3 The evaluation of the matrix effect to the Sr isotopes determination 17
2.2.4 Instrumentation 20
2.2.4.1 The instrument 20
2.2.4.2 The Sr isotopic determination 21
3.Results and Discussion 24
3.1 Validate the digestion methods 24
3.1.1 The first series of evaluation on digestion methods 24
3.1.1.1Microwave-assisted method 24
3.1.1.2 Dry-ashing method 25
3.1.1.3 Acid-attacked method 25
3.1.1.4 The summary of the first series of evaluation on digestion methods 26
3.1.2 The second series of evaluation on digestion methods 30
3.1.3 The third evaluation of microwave-assisted digestion methods 33
3.2 The characteristics of poplar trees 37
3.2.1 The elemental composition of the poplar trees 37
3.2.1.1 The Sr content changes in poplar trees and the comparison to other elements 37
3.2.1.2 The elemental composition in the poplar trees and the growth soil 38
3.2.1.3 The Sr Ca ratios variation in the poplar trees 44
3.2.2 The Sr isotopic fractionations in poplar trees 45
3.2.2.1 The mass-dependent fraction 87Sr/86Sr in the poplar trees 45
3.2.2.2 The δ88/86Sr fractionation during the poplar trees utilization process 45
3.2.2.3 The comparison of δ88/86Sr and other isotopic systems during plant utilization process 48
3.2.2.4 The comparison between δ88/86Sr and mass-dependent 87Sr /86Sr fractionation in the poplar tree 52
3.2.2.5 The relationship between δ88/86Sr and Sr contents in poplar trees 52
3.2.3 A Rayleigh fractionation model for estimating the water δ88/86Sr evolution during successive Sr utilization by poplar trees. 53
3.3 The implications of plants to the environments 55
4. Conclusions 58
5. References 60
參考文獻 A°berg G, Jacks G, Wickman T, Hamilton PJ (1990) Strontium isotopes in trees as an indicator for calcium availability. Catena, 17, 1–11.
Banner JL (2004) Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth-Science Reviews, 65, 141–194.
Blanckenburg FV, Wirén NV, Guelke M, Weiss DJ, Bullen TD (2009) Fractionation of Metal Stable Isotopes by Higher Plants. Elements, 375-380.
Black JR, Epstein E, Rains WD, Yin Q-Z, Casey WH (2008) Magnesium-isotope fractionation during plant growth. Environmental Science & Technology, 42, 7831-7836
Bolou-Bi EB, Poszwa A, Leyval C, Vigier N (2010) Experimental determination of magnesium isotope fractionation during higher plant growth. Geochimica et Cosmochimica Acta, 74, 2523–2537.
Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma, 82 (1–3), 197–225.
Cobert F, Schmitt AD, Bourgeade B, Labolle F, Badot PM, Chabaux O, Stille P (2011) Experimental identification of Ca isotopic fractionations in higher plants. Geochimica et Cosmochimica Acta, 75, 5467–5482.
de Souza GF, Reynolds BC, Kiczka M, Bourdon B (2010)Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed. Geochim Cosmochim Acta, 74, 2596–2614
Ehrlich S,. Gavrieli I, Dor LB, Halicz L (2001) Direct high-precision measurements of the 87Sr/86Sr isotope ratio in natural water, carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Journal of Analytical Atomic Spectrometry, 16, 1389–1392
Fietzke J, Eisenhauer A (2006) Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochem. Geophys. Geosyst. 7 Q08009,doi:10.1029/2006GC001243
Guelke M, Von Blanckenburg F (2007) Fractionation of stable iron isotopes in higher plants. Environmental Science & Technology, 41, 1896–1901.
Hindshaw RS, Reynolds BC, Wiederhold JG, Kiczka M, Kretzschmar R, Bourdon B (2013) Calcium isotope fractionation in alpine plants. Biogeochemistry, 112, 373–388
Halicz L, Segal I, Fruchter N, Stein M, Lazar B (2008) Strontium stable isotopes fractionate in the soil environments? Earth Planet. Sci. Lett. 272(1–2), 406–411.
Kiczka M, Wiederhold JG, Kraemer S, Bourdon B , Kretzschma R (2010) Iron isotope fractionation during Fe uptake and translocation in alpine plants. Environmental science & Technology, 44, 6144–6150.
Liu HC, You CF, Huang KF, Chung CH (2011) Precise determination of triple Sr isotopes (87Sr and88Sr) using MC-ICP-MS. Talanta, 88, 338– 344.
Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Fahey TJ, Reiners WA, Ryan DF, Martin CW, Bailey SW (1998) The biogeochemistry of
calcium at Hubbard Brook. Biogeochemistry, 41, 89–193.
Moynier F, Pichat S, Pons ML, Fike D, Balter V, Albarède F (2008) Isotopic Fractionation and transport mechanisms of Zn in plants. Chemical Geology, 267, 125-130
Moyen C, Roblin G (2010) Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio: comparison with Ca effects. Environmental and Experimental Botany, 68, 247–257
Moynier F, Agranier A, Hezel DC, Bouvier A (2010) Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites. Earth and Planetary Science Letters, 300 ,359–366
Ohno T, Hirata T. (2007) Simultaneous determination of mass-dependent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by multiple collector-ICP-mass spectrometry. Analytical Sciences, 23, 1275–1280
Opfergelt S, Cardinal D ,Henriet C, Draye X, Andre L, Delvaux B (2006) Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant Soil, 285, 333–345.
Palmer MR and Edmond JM (1992) Controls over the strontium isotope composition of river water. Geochimica et Cosmochimica Acta, 56, 2099-2111
Page B, Bullen T, Mitchell M (2008) Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry, 88, 1–13.
Pearce CR, Parkinson IJ, Gaillardet J, Bruce L.A. Charlier BLA, Mokadem F , Burton KW (2015) Reassessing the stable (δ88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs. Geochimica et Cosmochimica Acta, 157, 125–146.
Rees R, Robinson BH, Menon M, Lehmann E, Goerg-Günthardt MS, Schulin R (2011) Boron tolerance and accumulation of poplar. Environmental Science & Technology, 45, 10538–10543
Rosner M, Pritzkow W, Vogl J, Voerkelius S (2010) Development and validation of a method to determine the boron isotopic composition of crop plants. Analytical Chemistry, 83, 2562–2568.
Stettler R, Bradshaw T, Heilman P, Hinckley T (1996) Biology of Populus and its implication for management and conservation. National Research of Canada
Thermal electron corporation (2005) FinniganTM ELEMENT2/ FinniganTM ELEMENT XR Hardware Manual Revision A - 119 1410.
Thermal scientific (2007) DFS Double Focusing Sector Mass Spectrometer Hardware Manual Revision C - 116 8940 NEPTUNE Multicollector Software Version 3.2 - Operating Manual.
Viers J, Oliva P, Nonell A, Gélabert A, Sonke JE, Freydier R, Gainville R, Dupré B (2007)Evidence of Zn isotopic fractionation in a soil–plant system of a pristine tropical watershed (Nsimi, Cameroon). Chemical Geology, 239:124-137
Warham JO (2011) Mapping biosphere strontium isotope ratios across major lithological boundaries : a systematic investigation of the major influences on geographic variation in the 87Sr/86Sr composition of bioavailable strontium above the Cretaceous and Jurassic rocks of England. University of Bradford
Wiegand BA, Chadwick OA, Vitousek PM, Wooden JL (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. Geophysical Research Letters 32: L11404, doi: 10.1029/2005GL022746
Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2005) Isotopic discrimination of zinc in higher plants. New Phytologist, 165:703-710
Yang L, Peter C, Panne U, Sturgeon, RE J (2008) Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 23,1269–1274.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw