進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1308201517224600
論文名稱(中文) 探討存活素與自噬作用在癌細胞中之相互調控機制
論文名稱(英文) Investigation of the novel inter-regulatory relationship between survivin and autophagy in cancer cells
校院名稱 成功大學
系所名稱(中) 藥理學研究所
系所名稱(英) Department of Pharmacology
學年度 103
學期 2
出版年 104
研究生(中文) 詹琇涵
研究生(英文) Hsiu-Han Chan
學號 S26024052
學位類別 碩士
語文別 英文
論文頁數 101頁
口試委員 指導教授-張雋曦
口試委員-呂增宏
口試委員-張志鵬
中文關鍵字 Atg5  Atg7  細胞自噬  cathepsin L  存活素 
英文關鍵字 Atg5  Atg7  autophagy  cathepsin L  survivin 
學科別分類
中文摘要 自噬作用為細胞藉由溶酶體降解內蛋白及胞器的過程。儘管過去幾年,科學界投入大量的心力在研究關於不同環境下細胞如何調控自噬作用及其背後的相關機制與功能,我們對於自噬作用中分子調控機轉的了解還是不甚完善。

存活素 (survivin) 是細胞抗凋亡蛋白 (IAPs) 家族中的其中一員。過去已證實存活素只會存在於大部分的癌細胞中而不會存在於以分化完全的正常組織中。存活素的表現可藉由不同層面來調控,在後轉譯修飾的層面中,熱休克蛋白 (heat shock protein 90) 可以直接結合存活素蛋白使其穩定;然而當存活素與熱休克蛋白分離,存活素被泛素(ubiquitin)標的現象增加,接著被蛋白質分解酶 (26S proteasome) 分解。一般認為存活素在細胞及分子層面上擁有兩種促腫瘤形成的功能。存活素身為染色體移動複合物 (CPC) 複合物的一員,此複合物會參與在細胞分裂過程促進細胞分裂,進一步促進癌細胞的分裂。此外存活素可直接或間接的抑制癌細胞中的半胱天冬酶-3 (caspase-3)抑制癌細胞凋亡。

本篇研究中,我們發現存活素之新穎功能─負調控細胞中的自噬作用。藉由顯微鏡及西方墨點法的觀察,外送大量存活素於乳癌細胞中, MDC 所染到的螢光亮點數量減少及 p62/SQSTM1 蛋白表現的上升,證實酸性液胞胞器 (AVOs) 形成減少與細胞中自噬通量 (autophagic flux) 的下降。藉由西方墨點法也同時觀察到在乳癌細胞中外送大量的存活素能抑制參與在細胞自噬體形成中的分子Atg5、Atg、Atg12 表現及Atg5-Atg12 複合體的形成。更進一步,我們發現在同樣的條件下,存活素也會抑制 cathepsin L 及經過切割的Atg5。根據近期研究結果指出經過切割的Atg5會去調控半胱天冬酶-3的活性。這樣的結果顯示存活素可能會透過抑制自噬體形成的分子進一步抑制細胞自噬,並藉由降低切割過的Atg5表現而間接抑制半胱天冬酶-3活性。

有趣的是,我們發現存活素同時也做為細胞自噬的目標蛋白。無論我們利用藥理性質的抑制劑,或使用siRNA 抑制LC3、Atg7來抑制細胞中的自噬作用,皆發現存活素的表現量有上升的趨勢。重要的是,我們進一步利用免疫沉澱法觀察到存活素與 p62/SQSTM1 蛋白有直接相互作用的現象在MDA-MB-231乳癌細胞中。此外,在乳癌細胞中藉由氯奎寧 (Chloroquine) 及 LC3 siRNA抑制自噬作用後也使得存活素蛋白較為穩定。相反地,使乳癌細胞暴露於饑餓環境、處理他莫昔芬 (tamoxifen) 及雷帕黴素 (rapamycin),這些促進細胞自噬作用也能反過來觀察到存活素下降的情形。更值得一提的是,我們發現一已知會抑制存活素轉錄作用的小分子抑制劑 YM155,也會透過細胞自噬作用來調控存活素的表現。

總結上述結果都指向,在癌細胞中存活素和自噬作用可能有著互相調控的關係。本篇研究結果可提供關於存活素功能及調控其表現的新觀點。並進一步提供現今已試驗到臨床的用藥 YM155更詳細的分子機轉。
英文摘要 Autophagy is a lysosomal degradation pathway for the breakdown of intracellular proteins and organelles. Despite various efforts have been made in the past few years in dissecting the differential functions and the related underlying regulations of autophagy in different cellular situations; our understanding on the molecular regulatory mechanisms of autophagy is still far from complete.

Survivin is a member of the inhibitors-of-apoptosis proteins family. It is widely demonstrated that survivin is mainly expressed in tumors but not in the differentiated normal tissues. The expression of survivin can be transcriptionally and post-translationally regulated in cells. At the post-translational level, survivin protein can be stabilized by Heat shock protein 90 (Hsp90) through physical interactions. Dissociation of Hsp90 promotes survivin ubiquitination and subsequent protein degradation by the 26S proteasome. It is widely believed that survivin exhibits two important pro-tumorigenic functions. First, it promotes mitosis by forming the chromosomal passenger complex (CPC) and second, it inhibits apoptosis through direct and indirect caspases inhibition.

In this study, we found that survivin is a novel negative regulator of autophagy. Fluorescence microscopic analysis and Western blot analysis revealed that overexpression of survivin decreased acidic vesicular organelles (AVOs) formation and inhibited autophagic flux, as indicated by the decreased amount of MDC labeled fluorescence puncta present and the increased accumulation of p62/SQSTM1 in breast cancer cells, respectively. Western blot analysis also revealed that overexpression of survivin negatively regulated both the expression of Atg7, Atg5 monomer, Atg12 monomer, and the formation of Atg5-Atg12 conjugate, which are important molecules and protein complex for the formation of autophagosome in the cells. Interestingly, the same treatment also decreased the expression and activity of cathepsin L and the truncated Atg5, which is a molecule recently discovered to play a role in the positive regulation of caspase-3 activation. These results indicate that survivin may negatively regulate autophagy through down-regulation of the autophagosome formation and indirectly inhibit caspase-3 activation through reduction of the amount of truncated Atg5 present in breast cancer cells.

Interestingly, we also found that survivin is an autophagic substrate protein. Inhibiting autophagy by either pharmacological inhibitors or siRNA against LC3 and Atg7 increased survivin expression in breast cancer cells. Importantly, Western blot analysis and immunoprecipitation assay showed that survivin bound to p62/SQSTM1 in MDA-MB-231 cells. In addition, inhibition of autophagy by either chloroquine or LC3 siRNA increased the protein stability of survivin in breast cancer cells. In contrast, inducing autophagy by serum starvation, tamoxifen and rapamycin decreased survivin expression in breast cancer cells. Furthermore, mechanistic study revealed YM155, a survivin inhibitor that was originally developed to inhibit survivin gene transcription, also down-regulated survivin expression through autophagic protein degradation.

Taken together, findings of this study provide new mechanistic insights into both molecular functions and regulations of survivin and the molecular mechanism of actions of YM155, a drug currently undergoes clinical trials, in cancer cells.
論文目次 中文摘要 I
ABSTRACT IV
誌謝 VIII
Abbreviation IX
List of Tables XI
List of Figures XII
List of Appendices XIV
INTRODUCTION 1
1.1. Inhibitor of apoptosis (IAPs) family 2
1.2. Survivin 3
1.2.1. Survivin and cancer 3
1.2.2. Structure of survivin 4
1.2.3. Regulation of survivin expression 4
1.2.4. Well known functions of survivin 5
1.3. Autophagy 7
1.3.1. Introduction 7
1.3.2. Initiation of autophagy and formation of autophagosome 7
1.3.3. Vesicle docking/fusion 11
1.3.4. Degradation of targeted proteins 12
1.3.5. The autophagy independent function of Atg5 13
1.3.6. LIR domain and selective autophagy 13
1.3.7. Autophagy and cancer 14
1.4. Aims of this study 15
MATERIALS AND METHODS 17
2.1. Materials 18
2.2. Recipes 21
2.3. Methods 23
2.3.1. Cells and culture 23
2.3.2. Western blot analysis 23
2.3.3. Gene silencing by siRNA 24
2.3.4. Plasmid 24
2.3.5. Electroporation 25
2.3.6. Monodansylcadaverine (MDC) staining 25
2.3.7. RNA extraction and quantitative real-time polymerase chain reaction (qRT-PCR) assays 26
2.3.8. Immunofluorescence 26
2.3.9. Cathepsin L activity detection assay 27
2.3.10. Immunoprecipitation(IP) 27
2.3.11. Protein stability assay 28
2.3.12. Statistical analysis 28
RESULTS 29
3.1. Overexpression of survivin inhibits autophagy in breast cancer cells. 30
3.2. Survivin regulates the expression of Atg5, Atg7 and Atg12 through transcription-independent mechanisms in breast cancer cells. 31
3.3. Survivin negatively modulates the expression and activity of cathepsin L in breast cancer cells. 33
3.4. Autophagy negatively modulates survivin expression via transcription- and Hsp90-proteasomal protein degradation-independent mechanisms in breast cancer cells. 34
3.5. Survivin physically interacts with the autophagy cargo protein, p62/SQSTM1, in breast cancer cells. 36
3.6. Pharmacological and molecular inhibition of autophagy increases survivin protein stability in breast cancer cells. 37
3.7. Serum starvation, rapamycin, and tamoxifen induced autophagy down-regulates survivin expression in breast cancer cells. 38
3.8. YM155 suppresses survivin expression through autophagy in breast cancer cells. 39
DISCUSSION & CONCLUSIONS 41
4.1. Discussion 42
4.2. Conclusions 46
REFERENCES 47
TABLES 67
FIGURES 70
APPENDICES 95

參考文獻 Adida, C., Crotty, P. L., McGrath, J., Berrebi, D., Diebold, J., & Altieri, D. C. (1998). Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol, 152(1) pp. 43-49.
Aita, V. M., Liang, X. H., Murty, V. V., Pincus, D. L., Yu, W., Cayanis, E., et al. (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 59(1) pp. 59-65.
Ambrosini, G., Adida, C., & Altieri, D. C. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med, 3(8) pp. 917-921.
An, C. H., Kim, M. S., Yoo, N. J., Park, S. W., & Lee, S. H. (2011). Mutational and expressional analyses of ATG5, an autophagy-related gene, in gastrointestinal cancers. Pathol Res Pract, 207(7) pp. 433-437.
Aplin, A., Jasionowski, T., Tuttle, D. L., Lenk, S. E., & Dunn, W. A., Jr. (1992). Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol, 152(3) pp. 458-466.
Birgisdottir, A. B., Lamark, T., & Johansen, T. (2013). The LIR motif - crucial for selective autophagy. J Cell Sci, 126(Pt 15) pp. 3237-3247.
Cartier, J., Berthelet, J., Marivin, A., Gemble, S., Edmond, V., Plenchette, S., et al. (2011). Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription. J Biol Chem, 286(30) pp. 26406-26417.
Chantalat, L., Skoufias, D. A., Kleman, J. P., Jung, B., Dideberg, O., & Margolis, R. L. (2000). Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual alpha-helical extensions. Mol Cell, 6(1) pp. 183-189.
Chen, P., Zhu, J., Liu, D. Y., Li, H. Y., Xu, N., & Hou, M. (2014). Over-expression of survivin and VEGF in small-cell lung cancer may predict the poorer prognosis. Med Oncol, 31(1) p. 775.
Cheng, Q., Ling, X., Haller, A., Nakahara, T., Yamanaka, K., Kita, A., et al. (2012). Suppression of survivin promoter activity by YM155 involves disruption of Sp1-DNA interaction in the survivin core promoter. Int J Biochem Mol Biol, 3(2) pp. 179-197.
Cheng, S. M., Chang, Y. C., Liu, C. Y., Lee, J. Y. C., Chan, H. H., Kuo, C. W., et al. (2015). YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. Br J Pharmacol, 172(1) pp. 214-234.
Cheung, C. H., Chen, H. H., Cheng, L. T., Lyu, K. W., Kanwar, J. R., & Chang, J. Y. (2010). Targeting Hsp90 with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, survivin, in human A549, HONE-1 and HT-29 cancer cells. Mol Cancer, 9 p. 77.
Cheung, C. H., Sun, X., Kanwar, J. R., Bai, J. Z., Cheng, L., & Krissansen, G. W. (2010). A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-alpha therapy. Cancer Cell Int, 10 p. 36.
Cho, K. S., Yoon, Y. H., Choi, J. A., Lee, S. J., & Koh, J. Y. (2012). Induction of autophagy and cell death by tamoxifen in cultured retinal pigment epithelial and photoreceptor cells. Invest Ophthalmol Vis Sci, 53(9) pp. 5344-5353.
Choi, M. S., Kim, Y., Jung, J.-Y., Yang, S. H., Lee, T. R., & Shin, D. W. (2013). Resveratrol induces autophagy through death-associated protein kinase 1 (DAPK1) in human dermal fibroblasts under normal culture conditions. Exp Dermatol, 22(7) pp. 491-494.
Clem, R. J., Fechheimer, M., & Miller, L. K. (1991). Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science, 254(5036) pp. 1388-1390.
Clemens, M., Gladkov, O., Gartner, E., Vladimirov, V., Crown, J., Steinberg, J., et al. (2015). Phase II, multicenter, open-label, randomized study of YM155 plus docetaxel as first-line treatment in patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat, 149(1) pp. 171-179.
Croci, D. O., Cogno, I. S., Vittar, N. B., Salvatierra, E., Trajtenberg, F., Podhajcer, O. L., et al. (2008). Silencing survivin gene expression promotes apoptosis of human breast cancer cells through a caspase-independent pathway. J Cell Biochem, 105(2) pp. 381-390.
Damgaard, R. B., Nachbur, U., Yabal, M., Wong, W. W., Fiil, B. K., Kastirr, M., et al. (2012). The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell, 46(6) pp. 746-758.
Daugas, E., Susin, S. A., Zamzami, N., Ferri, K. F., Irinopoulou, T., Larochette, N., et al. (2000). Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J, 14(5) pp. 729-739.
De Duve, C., & Wattiaux, R. (1966). Functions of lysosomes. Annu Rev Physiol, 28 pp. 435-492.
Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10(1) pp. 51-64.
Dengjel, J., Schoor, O., Fischer, R., Reich, M., Kraus, M., Muller, M., et al. (2005). Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A, 102(22) pp. 7922-7927.
Dennemarker, J., Lohmuller, T., Muller, S., Aguilar, S. V., Tobin, D. J., Peters, C., et al. (2010). Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol Chem, 391(8) pp. 913-922.
Dogan, M., Cagli, S., Yuce, I., Bayram, A., Somdas, M. A., Karatas, D., et al. (2015). Survivin expression correlates with nodal metastasis in T1-T2 squamous cell carcinoma of the tongue. Eur Arch Otorhinolaryngol, 272(3) pp. 689-694.
Dong, H., Liu, G., Jiang, B., Guo, J., Tao, G., Yiu, W., et al. (2014). Overexpression of the Survivin gene in SGC7901 cell resistance to cisplatin. Oncol Lett, 8(5) pp. 1953-1956.
Eskelinen, E.-L., Illert, A. L., Tanaka, Y., Schwarzmann, G., Blanz, J., von Figura, K., et al. (2002). Role of LAMP-2 in Lysosome Biogenesis and Autophagy. Mol Biol Cell, 13(9) pp. 3355-3368.
Eskelinen, E. L., Schmidt, C. K., Neu, S., Willenborg, M., Fuertes, G., Salvador, N., et al. (2004). Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell, 15(7) pp. 3132-3145.
Felbor, U., Kessler, B., Mothes, W., Goebel, H. H., Ploegh, H. L., Bronson, R. T., et al. (2002). Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci U S A, 99(12) pp. 7883-7888.
Feltham, R., Bettjeman, B., Budhidarmo, R., Mace, P. D., Shirley, S., Condon, S. M., et al. (2011). Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. J Biol Chem, 286(19) pp. 17015-17028.
Fortugno, P., Beltrami, E., Plescia, J., Fontana, J., Pradhan, D., Marchisio, P. C., et al. (2003). Regulation of survivin function by Hsp90. Proc Natl Acad Sci U S A, 100(24) pp. 13791-13796.
Furuya, N., Yu, J., Byfield, M., Pattingre, S., & Levine, B. (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1) pp. 46-52.
Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S., & Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18) pp. 12297-12305.
Gill, S. R., Schroer, T. A., Szilak, I., Steuer, E. R., Sheetz, M. P., & Cleveland, D. W. (1991). Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol, 115(6) pp. 1639-1650.
Goossens-Beumer, I. J., Zeestraten, E. C., Benard, A., Christen, T., Reimers, M. S., Keijzer, R., et al. (2014). Clinical prognostic value of combined analysis of Aldh1, Survivin, and EpCAM expression in colorectal cancer. Br J Cancer, 110(12) pp. 2935-2944.
Gutierrez, M. G., Munafo, D. B., Beron, W., & Colombo, M. I. (2004). Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci, 117(Pt 13) pp. 2687-2697.
Hanada, T., Noda, N. N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., et al. (2007). The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy. J Biol Chem, 282(52) pp. 37298-37302.
Hara, K., Yonezawa, K., Weng, Q. P., Kozlowski, M. T., Belham, C., & Avruch, J. (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem, 273(23) pp. 14484-14494.
Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L., et al. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol, 181(3) pp. 497-510.
Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., & Yamamoto, A. (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11(12) pp. 1433-1437.
He, S. Q., Rehman, H., Gong, M. G., Zhao, Y. Z., Huang, Z. Y., Li, C. H., et al. (2007). Inhibiting survivin expression enhances TRAIL-induced tumoricidal activity in human hepatocellular carcinoma via cell cycle arrest. Cancer Biol Ther, 6(8) pp. 1247-1257.
Hinds, M. G., Norton, R. S., Vaux, D. L., & Day, C. L. (1999). Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nat Struct Biol, 6(7) pp. 648-651.
Hosokawa, N., Sasaki, T., Iemura, S., Natsume, T., Hara, T., & Mizushima, N. (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 5(7) pp. 973-979.
Hsu, K.-F., Wu, C.-L., Huang, S.-C., Wu, C.-M., Hsiao, J.-R., Yo, Y.-T., et al. (2009). Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy, 5(4) pp. 451-460.
Huynh, K. K., Eskelinen, E. L., Scott, C. C., Malevanets, A., Saftig, P., & Grinstein, S. (2007). LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J, 26(2) pp. 313-324.
Ichimura, Y., Kumanomidou, T., Sou, Y. S., Mizushima, T., Ezaki, J., Ueno, T., et al. (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem, 283(33) pp. 22847-22857.
Jager, S., Bucci, C., Tanida, I., Ueno, T., Kominami, E., Saftig, P., et al. (2004). Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci, 117(Pt 20) pp. 4837-4848.
Jeyaprakash, A. A., Klein, U. R., Lindner, D., Ebert, J., Nigg, E. A., & Conti, E. (2007). Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell, 131(2) pp. 271-285.
Johansen, T., & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3) pp. 279-296.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19(21) pp. 5720-5728.
Kallio, M. J., Nieminen, M., & Eriksson, J. E. (2001). Human inhibitor of apoptosis protein (IAP) survivin participates in regulation of chromosome segregation and mitotic exit. FASEB J, 15(14) pp. 2721-2723.
Kalvari, I., Tsompanis, S., Mulakkal, N. C., Osgood, R., Johansen, T., Nezis, I. P., et al. (2014). iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy, 10(5) pp. 913-925.
Kang, M. R., Kim, M. S., Oh, J. E., Kim, Y. R., Song, S. Y., Kim, S. S., et al. (2009). Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol, 217(5) pp. 702-706.
Kawamura, K., Yu, L., Tomizawa, M., Shimozato, O., Ma, G., Li, Q., et al. (2007). Transcriptional regulatory regions of the survivin gene activate an exogenous suicide gene in human tumors and enhance the sensitivity to a prodrug. Anticancer Res, 27(1a) pp. 89-93.
Kawasaki, H., Altieri, D. C., Lu, C. D., Toyoda, M., Tenjo, T., & Tanigawa, N. (1998). Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res, 58(22) pp. 5071-5074.
Kawasaki, H., Toyoda, M., Shinohara, H., Okuda, J., Watanabe, I., Yamamoto, T., et al. (2001). Expression of survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer, 91(11) pp. 2026-2032.
Kelly, A. E., Ghenoiu, C., Xue, J. Z., Zierhut, C., Kimura, H., & Funabiki, H. (2010). Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science, 330(6001) pp. 235-239.
Khan, Z., Khan, N., Varma, A. K., Tiwari, R. P., Mouhamad, S., Prasad, G. B., et al. (2010). Oxaliplatin-mediated inhibition of survivin increases sensitivity of head and neck squamous cell carcinoma cell lines to paclitaxel. Curr Cancer Drug Targets, 10(7) pp. 660-669.
Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110(2) pp. 163-175.
Kim, J., Kundu, M., Viollet, B., & Guan, K.-L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2) pp. 132-141.
Kirkin, V., Lamark, T., Sou, Y. S., Bjorkoy, G., Nunn, J. L., Bruun, J. A., et al. (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 33(4) pp. 505-516.
Kirkin, V., McEwan, D. G., Novak, I., & Dikic, I. (2009). A role for ubiquitin in selective autophagy. Mol Cell, 34(3) pp. 259-269.
Kogo, R., How, C., Chaudary, N., Bruce, J., Shi, W., Hill, R. P., et al. (2015). The microRNA-218~Survivin axis regulates migration, invasion, and lymph node metastasis in cervical cancer. Oncotarget, 6(2) pp. 1090-1100.
Komatsu, M., Waguri, S., Koike, M., Sou, Y. S., Ueno, T., Hara, T., et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 131(6) pp. 1149-1163.
Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., et al. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 169(3) pp. 425-434.
Krieg, A., Werner, T. A., Verde, P. E., Stoecklein, N. H., & Knoefel, W. T. (2013). Prognostic and clinicopathological significance of survivin in colorectal cancer: a meta-analysis. PLoS One, 8(6) p. e65338.
Kuma, A., Mizushima, N., Ishihara, N., & Ohsumi, Y. (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem, 277(21) pp. 18619-18625.
Lamark, T., Kirkin, V., Dikic, I., & Johansen, T. (2009). NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 8(13) pp. 1986-1990.
Lebovitz, C. B., Bortnik, S. B., & Gorski, S. M. (2012). Here, there be dragons: charting autophagy-related alterations in human tumors. Clin Cancer Res, 18(5) pp. 1214-1226.
Lee, I. H., & Finkel, T. (2009). Regulation of Autophagy by the p300 Acetyltransferase. J Biol Chem, 284(10) pp. 6322-6328.
Leung, E., Kannan, N., Krissansen, G. W., Findlay, M. P., & Baguley, B. C. (2010). MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biol Ther, 9(9) pp. 717-724.
Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6(4) pp. 463-477.
Li, C., Wu, Z., Liu, M., Pazgier, M., & Lu, W. (2008). Chemically synthesized human survivin does not inhibit caspase-3. Protein Sci, 17(9) pp. 1624-1629.
Li, F., & Altieri, D. C. (1999). The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res, 59(13) pp. 3143-3151.
Li, X., Dang, X., & Sun, X. (2012). Expression of survivin and VEGF-C in breast cancer tissue and its relation to lymphatic metastasis. Eur J Gynaecol Oncol, 33(2) pp. 178-182.
Li, X. U. E., Wu, D. I., Shen, J., Zhou, M., & Lu, Y. A. N. (2013). Rapamycin induces autophagy in the melanoma cell line M14 via regulation of the expression levels of Bcl-2 and Bax. Oncol Lett, 5(1) pp. 167-172.
Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B. H., et al. (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol, 8(7) pp. 688-699.
Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762) pp. 672-676.
Liu, Y. B., Gao, X., Deeb, D., Brigolin, C., Zhang, Y., Shaw, J., et al. (2014). Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin. Int J Oncol, 45(4) pp. 1735-1741.
Lopez, J., John, S. W., Tenev, T., Rautureau, G. J., Hinds, M. G., Francalanci, F., et al. (2011). CARD-mediated autoinhibition of cIAP1's E3 ligase activity suppresses cell proliferation and migration. Mol Cell, 42(5) pp. 569-583.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193(1) pp. 265-275.
Maloney, A., & Workman, P. (2002). HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther, 2(1) pp. 3-24.
Matsushita, M., Suzuki, N. N., Obara, K., Fujioka, Y., Ohsumi, Y., & Inagaki, F. (2007). Structure of Atg5•Atg16, a Complex Essential for Autophagy. J Biol Chem, 282(9) pp. 6763-6772.
Matteoni, R., & Kreis, T. E. (1987). Translocation and clustering of endosomes and lysosomes depends on microtubules. J Cell Biol, 105(3) pp. 1253-1265.
Mirza, A., McGuirk, M., Hockenberry, T. N., Wu, Q., Ashar, H., Black, S., et al. (2002). Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene, 21(17) pp. 2613-2622.
Miyachi, K., Sasaki, K., Onodera, S., Taguchi, T., Nagamachi, M., Kaneko, H., et al. (2003). Correlation between survivin mRNA expression and lymph node metastasis in gastric cancer. Gastric Cancer, 6(4) pp. 217-224.
Mizushima, N., Kuma, A., Kobayashi, Y., Yamamoto, A., Matsubae, M., Takao, T., et al. (2003). Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci, 116(Pt 9) pp. 1679-1688.
Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M. D., et al. (1998). A protein conjugation system essential for autophagy. Nature, 395(6700) pp. 395-398.
Morselli, E., Marino, G., Bennetzen, M. V., Eisenberg, T., Megalou, E., Schroeder, S., et al. (2011). Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol, 192(4) pp. 615-629.
Munafo, D. B., & Colombo, M. I. (2001). A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci, 114(Pt 20) pp. 3619-3629.
Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., et al. (2004). Autophagy defends cells against invading group A Streptococcus. Science, 306(5698) pp. 1037-1040.
Nakahara, T., Takeuchi, M., Kinoyama, I., Minematsu, T., Shirasuna, K., Matsuhisa, A., et al. (2007). YM155, a Novel Small-Molecule Survivin Suppressant, Induces Regression of Established Human Hormone-Refractory Prostate Tumor Xenografts. Cancer Res, 67(17) pp. 8014-8021.
Nakamura, N., Matsuura, A., Wada, Y., & Ohsumi, Y. (1997). Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J Biochem, 121(2) pp. 338-344.
Nakatogawa, H., Suzuki, K., Kamada, Y., & Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7) pp. 458-467.
Nixon, R. A. (2013). The role of autophagy in neurodegenerative disease. Nat Med, 19(8) pp. 983-997.
Noda, N. N., Kumeta, H., Nakatogawa, H., Satoo, K., Adachi, W., Ishii, J., et al. (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells, 13(12) pp. 1211-1218.
Noda, N. N., Ohsumi, Y., & Inagaki, F. (2010). Atg8-family interacting motif crucial for selective autophagy. FEBS Lett, 584(7) pp. 1379-1385.
Novak, I., Kirkin, V., McEwan, D. G., Zhang, J., Wild, P., Rozenknop, A., et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11(1) pp. 45-51.
O'Connor, D. S., Schechner, J. S., Adida, C., Mesri, M., Rothermel, A. L., Li, F., et al. (2000). Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol, 156(2) pp. 393-398.
Ohkuma, S., & Poole, B. (1978). Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A, 75(7) pp. 3327-3331.
Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J.-A., Outzen, H., et al. (2007). p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. J Biol Chem, 282(33) pp. 24131-24145.
Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33) pp. 24131-24145.
Penninger, J. M., & Kroemer, G. (2003). Mitochondria, AIF and caspases--rivaling for cell death execution. Nat Cell Biol, 5(2) pp. 97-99.
Petrarca, C. R., Brunetto, A. T., Duval, V., Brondani, A., Carvalho, G. P., & Garicochea, B. (2011). Survivin as a predictive biomarker of complete pathologic response to neoadjuvant chemotherapy in patients with stage II and stage III breast cancer. Clin Breast Cancer, 11(2) pp. 129-134.
Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 112(12) pp. 1809-1820.
Rabinowitz, J. D., & White, E. (2010). Autophagy and metabolism. Science, 330(6009) pp. 1344-1348.
Ravikumar, B., Acevedo-Arozena, A., Imarisio, S., Berger, Z., Vacher, C., O'Kane, C. J., et al. (2005). Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet, 37(7) pp. 771-776.
Riedl, S. J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, C., Fesik, S. W., et al. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell, 104(5) pp. 791-800.
Riolo, M. T., Cooper, Z. A., Holloway, M. P., Cheng, Y., Bianchi, C., Yakirevich, E., et al. (2012). Histone deacetylase 6 (HDAC6) deacetylates survivin for its nuclear export in breast cancer. J Biol Chem, 287(14) pp. 10885-10893.
Romanov, J., Walczak, M., Ibiricu, I., Schüchner, S., Ogris, E., Kraft, C., et al. (2012). Mechanism and functions of membrane binding by the Atg5–Atg12/Atg16 complex during autophagosome formation. EMBO J, 31(22) pp. 4304-4317
Rossi, A., Deveraux, Q., Turk, B., & Sali, A. (2004). Comprehensive search for cysteine cathepsins in the human genome. Biol Chem, 385(5) pp. 363-372.
Saftig, P., Beertsen, W., & Eskelinen, E.-L. (2008). LAMP-2: A control step for phagosome and autophagosome maturation. Autophagy, 4(4) pp. 510-512.
Sarbassov, D. D., Ali, S. M., Kim, D. H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol, 14(14) pp. 1296-1302.
Sato, T., Nakashima, A., Guo, L., Coffman, K., & Tamanoi, F. (2010). Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene, 29(18) pp. 2746-2752.
Seglen, P. O., Berg, T. O., Blankson, H., Fengsrud, M., Holen, I., & Stromhaug, P. E. (1996). Structural aspects of autophagy. Adv Exp Med Biol, 389 pp. 103-111.
Shin, S., Sung, B. J., Cho, Y. S., Kim, H. J., Ha, N. C., Hwang, J. I., et al. (2001). An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 40(4) pp. 1117-1123.
Shintani, T., Mizushima, N., Ogawa, Y., Matsuura, A., Noda, T., & Ohsumi, Y. (1999). Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J, 18(19) pp. 5234-5241.
Silke, J., & Vucic, D. (2014). IAP family of cell death and signaling regulators. Methods Enzymol, 545 pp. 35-65.
Song, Z., Yao, X., & Wu, M. (2003). Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem, 278(25) pp. 23130-23140.
Srirangam, A., Mitra, R., Gorski, C., Li, L., Sledge, G. W., Kishimoto, H., et al. (2004). Ritonavir blocks the growth of breast cancer line MDA-MB-231 in a mammary fat pad xenograft model, in part through calpain inhibition of cell cycle progression. Cancer Res, 64(7 Supplement) p. 123.
Su, L., Wang, Y., Xiao, M., Lin, Y., & Yu, L. (2010). Up-regulation of survivin in oral squamous cell carcinoma correlates with poor prognosis and chemoresistance. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 110(4) pp. 484-491.
Sun, C., Nettesheim, D., Liu, Z., & Olejniczak, E. T. (2005). Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry, 44(1) pp. 11-17.
Sun, M., Ouzounian, M., de Couto, G., Chen, M., Yan, R., Fukuoka, M., et al. (2013). Cathepsin‐L Ameliorates Cardiac Hypertrophy Through Activation of the Autophagy–Lysosomal Dependent Protein Processing Pathways. J Am Heart Assoc, 2(2).
Sun, Q., Zhang, J., Fan, W., Wong, K. N., Ding, X., Chen, S., et al. (2011). The RUN Domain of Rubicon Is Important for hVps34 Binding, Lipid Kinase Inhibition, and Autophagy Suppression. J Biol Chem, 286(1) pp. 185-191.
Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397(6718) pp. 441-446.
Suzuki, K., Kubota, Y., Sekito, T., & Ohsumi, Y. (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2) pp. 209-218.
Takahashi, R., Deveraux, Q., Tamm, I., Welsh, K., Assa-Munt, N., Salvesen, G. S., et al. (1998). A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem, 273(14) pp. 7787-7790.
Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E. L., Hartmann, D., Lullmann-Rauch, R., et al. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature, 406(6798) pp. 902-906.
Tanida, I. (2011). Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal, 14(11) pp. 2201-2214.
Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T., & Kominami, E. (2002). Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem, 277(16) pp. 13739-13744.
Tanida, I., Tanida-Miyake, E., Ueno, T., & Kominami, E. (2001). The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem, 276(3) pp. 1701-1706.
Tanida, I., Wakabayashi, M., Kanematsu, T., Minematsu-Ikeguchi, N., Sou, Y. S., Hirata, M., et al. (2006). Lysosomal turnover of GABARAP-phospholipid conjugate is activated during differentiation of C2C12 cells to myotubes without inactivation of the mTor kinase-signaling pathway. Autophagy, 2(4) pp. 264-271.
Tsukada, M., & Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333(1-2) pp. 169-174.
Vaira, V., Lee, C. W., Goel, H. L., Bosari, S., Languino, L. R., & Altieri, D. C. (2007). Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene, 26(19) pp. 2678-2684.
Velculescu, V. E., Madden, S. L., Zhang, L., Lash, A. E., Yu, J., Rago, C., et al. (1999). Analysis of human transcriptomes. Nat Genet, 23(4) pp. 387-388.
Verdecia, M. A., Huang, H., Dutil, E., Kaiser, D. A., Hunter, T., & Noel, J. P. (2000). Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol, 7(7) pp. 602-608.
Walczak, M., & Martens, S. (2013). Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy, 9(3) pp. 424-425.
Wei, H., Wei, S., Gan, B., Peng, X., Zou, W., & Guan, J. L. (2011). Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev, 25(14) pp. 1510-1527.
Whitesell, L., & Lindquist, S. L. (2005). HSP90 and the chaperoning of cancer. Nat Rev Cancer, 5(10) pp. 761-772.
Wu, L., Feng, Z., Cui, S., Hou, K., Tang, L., Zhou, J., et al. (2013). Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS One, 8(5) p. e63799.
Xie, Z., & Klionsky, D. J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol, 9(10) pp. 1102-1109.
Xu, R., Zhang, P., Huang, J., Ge, S., Lu, J., & Qian, G. (2007). Sp1 and Sp3 regulate basal transcription of the survivin gene. Biochem Biophys Res Commun, 356(1) pp. 286-292.
Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., et al. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 8(10) pp. 1124-1132.
Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., et al. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 8(10) pp. 1124-1132.
Zhao, Z., Fux, B., Goodwin, M., Dunay, I. R., Strong, D., Miller, B. C., et al. (2008). Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe, 4(5) pp. 458-469.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw