進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1308201411392900
論文名稱(中文) 以AFM微區阻抗儀研究SPS燒結氮化矽及氧化鋁奈米複合陶瓷之微結構變化機制
論文名稱(英文) Study of the microstructural evolution in spark plasma sintered Si3N4 and Al2O3 nanocomposites by AFM based local impedance spectroscopy
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 何維倫
研究生(英文) Wei-Lun Ho
學號 N56001501
學位類別 碩士
語文別 中文
論文頁數 62頁
口試委員 指導教授-劉浩志
口試委員-廖峻德
口試委員-許文東
口試委員-林士剛
口試委員-呂正傑
中文關鍵字 阻抗頻譜分析  掃描式探針顯微鏡  奈米複合陶瓷  SPS燒結 
英文關鍵字 impedance spectroscopy  SPM  nanocomposites  spark plasma sintering 
學科別分類
中文摘要 氮化矽與氧化鋁結構陶瓷中添加碳化物形成之複合陶瓷具有強韌且耐磨耗特性,在製程中以spark plasma sintering (SPS)燒結利用脈衝電流快速地達到緻密化,除了低耗能外也可應用在奈米粉體燒結。然而,SPS的燒結機制受電場與脈衝電流及燒結體導電特性影響,在短時間內的緻密化過程與傳統燒結機制有所不同,而微結構變化與脈衝電流路徑分布機制有關之焦耳熱效應及電潤濕現象也需要更多研究加以證實。
本實驗透過阻抗頻譜分析SPS燒結的氧化鋁與氮化矽複合陶瓷,利用交流阻抗的頻率響應以等效電路模型分析,將試片內部微結構與阻抗特性連結,更與atomic force microscopy (AFM)掃描探針顯微鏡結合,以AFM奈米探針的微區掃描功能對試片表面進行微區阻抗分析,探討微結構特性與電流分佈機制。
在塊材阻抗頻譜分析中,以等效電路模型描述氧化鋁複合陶瓷內部基材相與第二相的變化及晶界相的變化特性,以等效電路元件值觀察相變化,並透過X光繞射分析結果證實相變化過程。然而在添加導電相碳化鈦之氮化矽複合材料分析中,利用等效電路元件中電阻與電感特性,提出由電流路徑造成的自感效應與碳化鈦含量比較。接著在微區阻抗分析中先以掃描式電子顯微鏡分析經由反應式離子電漿蝕刻後的氮化矽試片表面,以能量散佈光譜儀之元素定性分析證實表面形貌的微結構特性,再以AFM掃描影像結果得知表面形貌中氮化矽、碳化鈦及玻璃液相分布;對此三處特性區域施以交流阻抗分析,將微區阻抗結果以等效電路模型分析。結果證實在導電碳化鈦網絡結構提供的脈衝電流路徑、與玻璃液相和少量碳化鈦的路徑中,焦耳熱效應在燒結體內部加速燒結反應進行。
在SPS燒結過程中,脈衝電流先經由包圍在燒結體外部的石墨模具,並由初期的液相燒結過程在固/液相界面之間的電荷累積(電潤濕現象)提供此階段燒結反應加速進行;當溫度快速上升且燒結過程加速反應的同時,脈衝電流經由內部導電碳化鈦粉體流入燒結體中,脈衝電流路徑使焦耳熱效應將能量傳遞至燒結體內部。當碳化鈦在燒結體內部形成網絡狀結構時,電流路徑更廣且玻璃液相也與少量碳化鈦構成交錯綿密的網絡結構,使焦耳熱透過脈衝電流路徑使燒結反應更加劇烈;故導電相複合陶瓷可利用SPS在短時間內達到燒結緻密。
微區阻抗分析成功地證實了電流在燒結體內部的分布機制與微結構的影響,提供奈米複合陶瓷在SPS研究中一個有利的研究方向。
英文摘要 In this study, impedance spectroscopy combined with atomic force microscopy (AFM) to conduct local impedance measurement (LIM), using nano-scale AFM probe to measure the frequency responses of the specific microstructure from Si3N4-TiC composites surface. The bulk impedance analysis of Al2O3-based ceramic indicated that both the phase transformation and grain boundary information can be revealed from the equivalent circuit model fitting result and be proved by X-ray diffraction result. The bulk impedance analysis result of Si3N4-TiC indicated that the inductance value from the fitting result become higher due to “self-inductance” response as more conductive TiC were added. To realize the microstructural characteristics from the sample surface, energy dispersive spectrometer can determine the element’s qualitative analysis with SEM after plasma etching. LIM used the AFM scan system to find the specific location from the topography image. And applying AC signal to get the impedance response from these location (TiC grain, glassy phase, and Si3N4 grain). The result shows current path within the sintered body which allow the joule heating along conductive TiC network. For the SPS process, pulse current pass around the carbon die and provide the electro wetting phenomenon between the liquid phase and conductive solid phase in the beginning. As the heating temperature rose, pulse current flowed inside the sintered body along the conductive TiC phase. Once the TiC network was formed, more energy accompanied with joule heating along the pulse current. Thus, SPS can densify powder-compact in a short time.
論文目次 中文摘要... II
Study of the microstructural evolution in spark plasma sintered Si3N4 and Al2O3 nanocomposites by AFM based local impedance spectroscopy ...IV
誌謝...IX
目錄...XI
表目錄...XIII
圖目錄...XIV
符號說明... XVII
第1章緒論...1
1.1 前言...1
1.2 動機及研究目的...3
第2章理論基礎簡介...4
2.1 SPS燒結技術...4
2.2 電化學阻抗分析原理...7
2.3 原子力顯微鏡原理...13
2.4 掃描式微區阻抗分析技術...15
第3章文獻回顧...16
3.1 氮化矽及氧化鋁陶瓷複合材料...16
3.2 阻抗分析在固態材料及陶瓷的應用...20
3.3 掃描式微區阻抗分析技術...24
第4章實驗方法及步驟...26
4.1 氮化矽及氧化鋁複合陶瓷製備...27
4.1.1 氮化矽複合陶瓷製備...27
4.1.2 氧化鋁複合陶瓷製備...28
4.2 表面形貌及微結構分析...29
4.2.1 電子顯微鏡影像分析...29
4.2.2 原子力顯微鏡影像分析...29
4.3 阻抗頻譜分析方法...30
4.3.1 塊材阻抗分析法...30
4.3.2 掃描式微區阻抗分析法...32
第5章結果與討論 ...33
5.1 複合陶瓷塊材阻抗分析結果...33
5.1.1 氧化鋁複合陶瓷塊材阻抗分析結果...33
5.1.2 氮化矽複合陶瓷塊材阻抗分析結果...40
5.2 掃描電子與掃描探針顯微鏡影像分析結果...43
5.2.1 SEM掃描電子顯微鏡影像分析...43
5.2.2 AFM掃描探針顯微鏡影像分析結果...46
5.3 氮化矽複合陶瓷微區阻抗分析結果...49
5.3.1 AFM微區阻抗分析結果...49
5.3.2 微區阻抗分析及SPS電流分佈機制討論...53
第6章結論...55
第7章未來與展望 ...57
第8章參考文獻...58
參考文獻 [1] J. Z. Jiang, F. Kragh, D. J. Frost, K. StÃ¥hl, and H. Lindelov, "Hardness and thermal stability of cubic silicon nitride," Journal of Physics: Condensed Matter, vol. 13, pp. L515-L520, 2001.
[2] Y. Wang and S. M. Hsu, "The effects of operating parameters and environment on the wear and wear transition of alumina," Wear, vol. 195, pp. 90-99, 1996.
[3] H. Wang, L. Gao, Z. Shen, and M. Nygren, "Mechanical properties and microstructures of Al2O3–5 vol.% YAG composites," Journal of the European Ceramic Society, vol. 21, pp. 779-783, 6// 2001.
[4] H. PENG, "Spark Plasma Sintering of Si3N4-based Ceramics - Sintering mechanism-Tailoring microstructure-Evaluationg properties," Inorganic Chemistry, Stockholm University, 2004.
[5] C.-T. Fu, A.-K. Li, and J.-M. Wu, "Effects of oxidation of Cr3C2 particulate-reinforced alumina composites on microstructure and mechanical properties," Journal of Materials Science, vol. 28, pp. 6285-6294, 1993.
[6] U. Anselmi-Tamburini, J. E. Garay, and Z. A. Munir, "Fundamental investigations on the spark plasma sintering/synthesis process:III," Materials Science and Engineering: A, vol. 407, pp. 24-30, 2005.
[7] U. Anselmi-Tamburini, S. Gennari, J. Garay, and Z. A. Munir, "Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions," Materials Science and Engineering: A, vol. 394, pp. 139-148, 2005.
[8] W. Chen, U. Anselmi-Tamburini, J. Garay, J. Groza, and Z. A. Munir, "Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of dc pulsing on reactivity," Materials Science and Engineering: A, vol. 394, pp. 132-138, 2005.
[9] J. R. Macdonald and W. B. Johnson, Fundamentals of impedance spectroscopy: Wiley Online Library, 2005.
[10] M. Tokita, "Mechanism of spark plasma sintering," in Proceedings of the International Symposium on Microwave, Plasma and Thermochemical Processing of Advanced Materials, ed S. Miyake and M. Samandi, JWRI, Osaka Universities, Japan, 1997, pp. 69-76.
[11] R. Karimi Shervedani and A. Lasia, "Evaluation of the surface roughness of microporous Ni-Zn-P electrodes by in situ methods," Journal of Applied Electrochemistry, vol. 29, pp. 979-986, //1999.
[12] G. Instruments, "Basics of Electrochemical Impedance Spectroscopy," Gamry Instruments2007.
[13] D. Vladikova, "THE TECHNIQUE OF THE DIFFERENTIAL IMPEDANCE ANALYSIS
Part I: BASICS OF THE IMPEDANCE SPECTROSCOPY," in International Workshop “Advanced Techniques for Energy Sources Investigation and Testing”, Sofia, Bulgaria, 2004.
[14] Z. Stoynov and D. Vladikova, Differential impedance analysis: Marin Drinov academic publishing house Sofia, 2005.
[15] Xiao-Zi Yuan, Chaojie Song, Haijiang Wang, and Jiujun Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Springer London, 2010.
[16] R. S. a. R. LLC. (2009, 19 May). The constant phase element (CPE). Available: http://www.consultrsr.com/resources/eis/cpe1.htm
[17] Digital Instruments and V. M. Group, "Scanning Probe Microscopy Training Notebook," Digital Instruments, Veeco Metrology Group2000.
[18] Ming Yen Lin, Chia-Seng Chang, and W. Li, "An Introduction to the Principle of Atomic Force Microscope (I)," 科儀新知, vol. 27, pp. 46-57, 2007.
[19] Z. Shen, Z. Zhao, H. Peng, and M. Nygren, "Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening," Nature, vol. 417, pp. 266-9, May 16 2002.
[20] J. Holt and Z. Munir, "Combustion synthesis of titanium carbide: theory and experiment," Journal of materials science, vol. 21, pp. 251-259, 1986.
[21] H. J. Seifert, "Refractory and Hard Materials in the Ti-Si-BCN System-Phase Equilibria, Phase Reactions and Thermal Stabilities," DTIC Document2004.
[22] A. S. Kurlov and A. I. Gusev, "Tungsten carbides and W-C phase diagram," Inorganic Materials, vol. 42, pp. 121-127, 2006.
[23] S. J. Schneider, Engineered Materials Handbook, Volume 4: Ceramics and Glasses: ASM International. The Materials Information Society, USA
1991.
[24] NIST. (2010). NIST Standard Reference Databases: Materials. Available: http://www.nist.gov/srd/materials.cfm
[25] M. Hutchins, O. Abu-Alkhair, M. El-Nahass, and K. Abdel-Hady, "Electrical conduction mechanisms in thermally
evaporated tungsten trioxide (WO3) thin films," Journal of Physics: Condensed Matter, vol. 18, p. 9987, 2006.
[26] W. Callister, Materials Science and Engineering, An Introduction: John Wiley & Sons, 2007.
[27] O. Heaviside, Electrical Papers, by Oliver Heaviside: Macmillan, 1892.
[28] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications: Wiley-Interscience, 2005.
[29] W. Nernst, "Methode zur Bestimmung von Dielektrizitatskonstanten," Z. phys. Chem., vol. 14, pp. 622-663, 1894.
[30] N. M. Tallan and R. B. Frieser, "“Electrical Conductivity in Ceramics and Glass,” Part A," Journal of The Electrochemical Society, vol. 122, p. 12C, January 1, 1975 1975.
[31] B. T. Mark E. Orazem, Electrochemical Impedance Spectroscopy, 1 ed.: Wiley-Interscience, 2008.
[32] H. Y. M. Miyayama, "Dependence of Grain-Boundary Resistivity on Grain-Boundary Density in Yttria-Stabilized Zirconia," Communications of the American Ceramic Society, 1984.
[33] J. H. Hwang, K. S. Kirkpatrick, T. O. Mason, and E. J. Garboczi, "Experimental limitations in impedance spectroscopy: Part IV. Electrode contact effects," Solid State Ionics, vol. 98, pp. 93-104, // 1997.
[34] N. Bonanos, B. Steele, and E. Butler, "Applications of impedance spectroscopy," in Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition, ed, 2005, pp. 205-537.
[35] A. H. Sihvola, Electromagnetic mixing formulas and applications: Iet, 1999.
[36] N. A. K. SAADAT A. SIDDIQI, M. SABIEH ANWAR, "IMPEDANCE SPECTROSCOPY (IS), XRD AND SEM
OF OXIDE-ADDED Si3N4," Modern Physics Letters B, vol. 16, pp. 525-537, 2002.
[37] T. Adams, D. Sinclair, and A. West, "Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics," Physical Review B, vol. 73, 2006.
[38] S. Mandal, H. Mullick, S. Majumdar, A. Dhar, and S. K. Ray, "Effect of Al concentration in grain and grain boundary region of Al-doped ZnO films: a dielectric approach," Journal of Physics D: Applied Physics, vol. 41, p. 025307, 2008.
[39] N. Bagdassarov and A. Slutskii, "Phase transformations in calcite from electrical impedance measurements," Phase Transitions,vol. 76, pp. 1015-1028, 2003.
[40] D. Lisovytskiy, Z. Kaszkur, J. Pielaszek, M. Marzantowicz, and J. Dygas, "In situ impedance and X-ray diffraction study of phase transformation in lithium manganese spinel," Solid state ionics, vol. 176, pp. 2059-2064, 2005.
[41] S. V. Kalinin and D. A. Bonnell, "Scanning impedance microscopy of electroactive interfaces," Applied Physics Letters, vol. 78, pp. 1306-1308, 02/26/ 2001.
[42] R. O’Hayre, G. Feng, W. D. Nix, and F. B. Prinz, "Quantitative impedance measurement using atomic force microscopy," Journal of Applied Physics, vol. 96, p. 3540, 2004.
[43] A. Arutunow, K. Darowicki, and A. Zieliński, "Atomic force microscopy based approach to local impedance measurements of grain interiors and grain boundaries of sensitized AISI 304 stainless steel," Electrochimica Acta, vol. 56, pp. 2372-2377, 2011.
[44] R. O’Hayre, "Ionic and electronic impedance imaging using atomic force microscopy," Journal of Applied Physics, vol. 95, p. 8382, 2004.
[45] Y.-H. Lin, J. Cai, M. Li, C.-W. Nan, and J. He, "Grain boundary behavior in varistor-capacitor TiO[sub 2]-rich CaCu[sub 3]Ti[sub 4]O[sub 12] ceramics," Journal of Applied Physics, vol. 103, p. 074111, 2008.
[46] 李京桓, "Investigation of process and microstructure of silicon oxynitride based ceramics prepared by nano-sized silicon nitride powders and metal nitrate salts," Master, MSE, NCKU, 2005.
[47] 張曼蘋, "Preparation of Tungsten Carbide / Aluminum Oxide Nanocomposites and Investigation on Microstructure and Mechanical Properties," Master, Department of Materials Science and Engineering, NCKU, Taiwan, 2012.
[48] C. H. Lee, H. H. Lu, C. A. Wang, P. K. Nayak, and J. L. Huang, "Effect of heating rate on spark plasma sintering of a nanosized β-Si 3N 4-Based Powder," Journal of the American Ceramic Society, vol. 94, pp. 1182-1190, // 2011.
[49] B. H. Liu, P.-J. Su, C.-H. Lee, and J.-L. Huang, "Linking microstructure evolution and impedance behaviors in spark plasma sintered Si3N4/TiC and Si3N4/TiN ceramic nanocomposites," Ceramics International, vol. 39, pp. 4205-4212, 2013.
[50] R. Morrison, Grounding and shielding: circuits and interference: Wiley-IEEE Press, 2006.
[51] C. H. Lee, H. H. Lu, C. A. Wang, P. K. Nayak, and J. L. Huang, "Influence of Conductive Nano-TiC on Microstructural
Evolution of Si3N4-Based Nanocomposites in Spark Plasma Sintering," Journal of the American Ceramic Society, vol. 94, pp. 959-967, Mar 2011.
[52] R. Landauer, "The Electrical Resistance of Binary Metallic Mixtures," Journal of Applied Physics, vol. 23, pp. 779-784, 1952.
[53] Y. Yasutomi and M. Sobue, "Development of Reaction-Bonded Electro-Conductive TiN-Si3N4 and Resistive Al2O3-Si3N4 Composites," in A Collection of Papers Presented at the 14th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings, ed: John Wiley & Sons, Inc., 2008, pp. 857-867.
[54] R. O’Hayre, M. Lee, F. B. Prinz, and S. V. Kalinin, "Frequency-dependent transport imaging by scanning probe microscopy," in Scanning Probe Microscopy, ed: Springer, 2007, pp. 132-172.
[55] A. C. Lee, P.-J. Su, B. H. Liu, and W. Lee, "Probing the Conductance and Microstructure Heterogeneity of Si3N4/TiC-Based Nanocomposite at the Nanoscale by Scanning Impedance Microscopy," Journal of the American Ceramic Society, pp. 1-5, 2013.
[56] M. Belmonte, J. G. Julian, P. Miranzo, and M. I. Osendi, "Spark Plasma Sintering Mechanisms in Si3N4 Based Materials," Innovative Processing and Manufacturing of Advanced Ceramics and Composites: Ceramic Transactions, pp. 63-69, 2010.
[57] P. Miranzo, J. González-Julián, M. I. Osendi, and M. Belmonte, "Enhanced particle rearrangement during liquid phase spark plasma sintering of silicon nitride-based ceramics," Ceramics International, vol. 37, pp. 159-166, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw