進階搜尋


下載電子全文  
系統識別號 U0026-1308201210030700
論文名稱(中文) 以計算及實驗探討相位差對串聯型及並聯型蠕動式微幫浦流量之影響
論文名稱(英文) A Computational and Experimental Study of Phase Difference Effects on the Flow Rate of Peristaltic Micropumps with Pumping Chambers in Series and Parallel Configurations
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 100
學期 2
出版年 101
研究生(中文) 龔鼎琮
研究生(英文) Ding-Cong Gong
學號 P48931028
學位類別 博士
語文別 英文
論文頁數 123頁
口試委員 指導教授-潘大知
共同指導教授-呂宗行
口試委員-李定智
口試委員-宛同
口試委員-牛仰堯
口試委員-劉建惟
中文關鍵字 蠕動式微幫浦  相位差  串聯型  並聯型  幫浦流量 
英文關鍵字 Peristaltic micropump  Phase difference  Series configuration  Parallel configuration  Pump flow rate 
學科別分類
中文摘要 本論文以計算和實驗方式探討驅動相位差對蠕動式微幫浦之幫浦流量的影響。本文則使用商用軟體進行數值模擬,當固定微幫浦的幾何尺寸和以固定頻率1 Hz的正弦波使薄膜振動,針對微幫浦的相位差進行研究,且驅動相位差的變化以每10°從10°改變到120°。微幫浦構型的變化則有三個振動腔的基本構型以及振動腔增加至8個的串聯和並聯構型。在串聯型和並聯型的微幫浦,計算結果顯示最大流量Qmax隨著振動腔個數(n)增加而增加。在串聯型微幫浦,產生最大流量的最大相位差 隨著n增加而減少;然而在並聯型微幫浦,產生最大流量的最大相位差 隨著n增加而增加。另外薄膜振幅對幫浦流量也有顯著的影響。
實驗的進行主要是用以驗證計算結果。所以在製作微幫浦的薄膜則使用PDMS材質並添加鐵粉,即可藉由永久磁鐵吸引薄膜並造成其作動。在實驗時,振動薄膜之間的相位差則經由特別設計凸輪轉盤旋轉所致動,所以薄膜以類似方形波所驅動而產生振動。實驗結果顯示儘管實驗和計算結果有差異,但是基本趨勢仍可以驗證,例如在串聯型微幫浦,隨著n增加,Qmax隨之增加而且 隨之減少;在並聯型微幫浦得到趨勢,則是隨著n增加,Qmax和 都隨之增加。
英文摘要 This dissertation studies the phase difference effect on the flow rate of peristaltic micropump using numerical and experimental methods. Commercial software (CFD-ACE+) is validated first and employed in numerical simulations. To focus on the phase relationship of peristaltic micropumps, all geometric parameters of the pump are fixed for a baseline design and the diaphragm motion is assumed as a sinusoidal waveform with a fixed frequency of 1 Hz. The phase difference between neighboring chambers is varied from 30° to 120° in 10° increments. The pump configurations include the basic 3-chamber configuration and the configurations with up to 8 chambers in series or in parallel arrangements. The computational results indicate that the maximum flow rate Qmax increases with increasing number of chambers (n) for both series and parallel configurations. However, the maximum phase difference for the maximum pump flow decreases with increasing number of chambers (n) in series pumps, but increases with increasing number of chambers (n) in parallel pumps. The diaphragm oscillation amplitude also has a significant impact on the pumping flow rate.
Experiments are performed in an attempt to verify the computational findings. The pump diaphragm is fabricated using PDMS with iron particle contents, and permanent magnets are employed to actuate the diaphragm into movement. The phase relation between diaphragm motions are controlled by a set of rotary cams specially designed and fabricated for the experiments. Near Rectangular waveform is used in the actuation of diaphragm movement. Results show that despite of the difference between computations and experiments, the basic trends of increasing Qmax and decreasing with increasing number of chambers (n) are verified for peristaltic micropumps in series configurations, while the trends of increasing Qmax and are also in good agreement with computational results for peristaltic micropumps in parallel configurations.
論文目次 Abstract in Chinese i
Abstract x
Acknowledgments xii
Contents xiii
List of Tables xvi
List of Figures xx
Nomenclature xxvii
Chapter I Introduction 1
1.1 MEMS Technology 1
1.2 Micropumps 1
1.3 Operation of Peristaltic Pumps 3
1.4 Research Motivations and Objectives 7
Chapter II Numerical Simulation 9
2.1 CFD Tool 9
2.2 Basic Pump Configuration and Computational Grid 10
2.3 Boundary Conditions 11
2.4 Diaphragm Oscillation 11
2.5 Validations for CFD Tool 13
2.5.1 Flow on an Oscillating Infinite Plate 13
2.5.2 Oscillatory Flow in Circular Pipe 14
2.5.3 2D Test Case 15
2.6 Operation of Peristaltic Micropump 16
2.6.1 Series Type 16
2.6.2 Parallel Type 17
2.7 Pumping Flow Rate, Stroke Volume and Pumping Efficiency 18
2.8 3D Peristaltic Pump Test Example 19
2.9 Pump Flow Rate and Phase Difference in Series Configuration 20
2.10 Pumping Flow Rate and Phase Difference in Synchronized Series 22
Configuration 22
2.11 Pump Flow Rate and Phase Difference in Parallel Configuration 23
2.12 Increasing Pump Flow Rate by Increasing Diaphragm Amplitude and Channel/Chamber Depth 24
2.13 Comments on Numerical Experiments 25
Chapter III Experiments 27
3.1 Fabrication of Peristaltic Micropump 28
3.2 Experimental Setup 30
3.2.1 Cam Disc Design 30
3.3 Experimental Procedures 33
3.3.1 Measurement of Pump Flow Rate 33
3.4 Experimental Results and Discussion 36
3.4.1 Pump Flow Rate versus Phase Difference in Series Configuration 36
3.4.2 Pump Flow Rate versus Phase Difference in Parallel Configuration 37
3.4.3 Comments on Experimental Results 38
Chapter IV Summaries and Suggestions 39
4.1 Summaries 39
4.2 Suggestions of Future Work 41
References 43
Tables 54
Figures 62
Appendix A 110
A.1 Comparisons between the Square and Circular Pumping Chambers for the 3-Chamber Series Micropump 110
A.2 Increasing Microchannel Length e of the Leftmost and the Rightmost Sections for the 3-chamber Series Micropump 113
Appendix B 115
B.1 Changing Microchannel Length c between Two Consecutive Chambers for the 3-chamber Series Micropump 115
B.2 Increasing Microchannel Width cw between Two Consecutive Chambers for the 3-chamber Series Micropump 117
B.3 Increasing the Central Pumping Chamber Size for the 3-chamber Series Micropump 119
Publication List 121
Vita 123
參考文獻 [1] Nguyen, N. T., Huang, X., Chuan, T. K., “MEMS-Micropumps: A Review,” Transactions of the ASME Journal of Fluids Engineering, Vol. 124, No. 2, June 2002, pp. 384-392.
[2] Shoji, S., and Esashi, M., “Microflow Devices and Systems,” Journal of Micromechanics and Microengineering, Vol. 4, No. 4, December 1994, pp. 157-171.
[3] Laser, D.J., and Santiago, J. G., “A Review of Micropumps,” Journal of Micromechanics and Microengineering, Vol. 14, No. 6, June 2004, pp. R35-R64.
[4] Smits, J. G., “Piezoelectric Micropump with Three Valves Working Peristaltically,” Sensors and Actuators A: Physical, Vol. 21-23, 1990, pp. 203-206.
[5] Jang, L. S., Li, Y. J., Lin, S. J., Hsu, Y. C., Yao, W. S., Tsai, M. C., and Hou, C. C., “A Stand-Alone Peristaltic Micropump Based on Piezoelectric Actuation,” Biomedical Microdevices, Vol. 9, No. 2, April 2007, pp. 185-94.
[6] Li, J. H., Kan, W. H., Jang, L. S., and Hsu, Y. C., “A Portable Micropump System Based on Piezoelectric Actuation,” The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), Taipei, Taiwan , November 2007, pp. 2898-2903.
[7] Hwang, S. F., and Shiu, Y. S., “Fabrication and Characterization of Two-Chamber and Three-Chamber Peristaltic Micropumps,” International Journal of Precision Engineering and Manufacturing, Vol. 11, No. 4, August 2010, pp. 613-618.
[8] Jang, L. S., Shu, K., Yu, Y. C., Li, Y. J., and Chen, C. H., “Effect of Actuation Sequence on Flow Rates of Peristaltic Micropumps with PZT Actuators,” Biomedical Microdevices, Vol. 11, No. 1, 2009, pp. 173-181.
[9] Hsu, Y. C., and Le, N. B., “Equivalent Electrical Network for Performance Characterization of Piezoelectric Peristaltic Micropump,” Microfluidics and Nanofluidics, Vol. 7, No. 2, 2009, pp. 237-248.
[10] Jang, L. S., and Yu, Y. C., “Peristaltic Micropump System with Piezoelectric Actuators,” Microsystem Technologies, Vol. 14, No. 2, 2008, pp. 241-248.
[11] Hsu, Y. C., Lin, S. J., and Hou, C. C., “Development of Peristaltic Antithrombogenic Micropumps for in Vitro and ex Vivo Blood Transportation Tests,” Microsystem Technologies, Vol. 14, No. 1, 2007, pp. 31-41.
[12] Jang, L. S., and Kan, W. H., “Peristaltic Piezoelectric Micropump System for Biomedical Applications,” Biomedical Microdevices, Vol. 9, No. 4, August 2007, pp. 619-626.
[13] Husband, B., Bu, M., Evans, A. G. R., and Melvin, T., “Investigation for the Operation of an Integrated Peristaltic Micropump,” Journal of Micromechanics and Microengineering, Vol. 14, No. 9, 2004, pp. S64-S69.
[14] Husband, B., Bu, M., Apostolopoulos, V., Melvin, T., and Evans, A. G. R., “Novel Actuation of an Integrated Peristaltic Micropump,” Microelectronic Engineering, Vol. 73-74, 2004, pp. 858-863.
[15] Bu, M., Melvin, T., Ensell, G., Wilkinson, J. S., and Evans, A. G. R., “Design and Theoretical Evaluation of a Novel Microfluidic Device to be Used for PCR,” Journal of Micromechanics and Microengineering, Vol. 13, 2003, pp. S125-S130.
[16] Graf, N. J., and Bowser, M. T., “A Soft-polymer Piezoelectric Bimorph Cantilever-actuated Peristaltic Micropump,” Lab on a Chip, 2008, Vol. 8, No. 10, pp. 1664-1670.
[17] Nguyen, N. T., and Huang, X., “Miniature Valveless Pumps Based on Printed Circuit Board Technique,” Sensors and Actuators A: Physical, Vol. 88, 2001, pp. 104-111.
[18] Nguyen, N. T., and Huang, X., “Development of a Peristaltic Pump in Printed Circuit Boards,” Journal of Micromechatronics, Vol. 3, No. 1, 2005, pp. 1-13.
[19] Nguyen, N. T., Pham, M., and Goo, N. S., “Development of a Peristaltic Micropump for Bio-medical Applications Based on Mini LIPCA,” Journal of Bionic Engineering, Vol. 5, No. 2, June 2008, pp. 135-141.
[20] Hsu, Y. C., Li, J. H., and Le, N. B., “An Experimental and Numerical Investigation into the Effects of Diffuser Valves in Polymethylmethacrylate (PMMA) Peristaltic Micropumps,” Sensors and Actuators A: Physical, Vol. 148, No. 1, 2008, pp. 149-157.
[21] Lee, D.S., Ko, J. S., and Kim, Y. T., “Bidirectional Pumping Properties of a Peristaltic Piezoelectric Micropump with Simple Design and Chemical Resistance,” Thin Solid Films, Vol. 468, No. 1-2, 2004, pp. 285-290.
[22] Lee, D. S., Yoon, H. C., and Ko, J. S., “Fabrication and Characterization of a Bidirectional Valveless Peristaltic Micropump and its Application to a Flow-type Immunoanalysis,” Sensors and Actuators B: Chemical, Vol. 103, No. 1-2, 2004, pp. 409-415.
[23] Goldschmidtboing, F., Doll, A., Heinrichs, M., Woias, P., Schrag, H. J., and Hopt, U. T., “A Generic Analytical Model for Micro-diaphragm Pumps with Active Valves,” Journal of Micromechanics and Microengineering, Vol. 15, No. 4, 2005, pp. 673-683.
[24] Richter, M., Congar, Y., Nissen, J., Neumayer, G., Heinrich, K., and Wackerle, M., “Development of a Multi-material Micropump,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 220, No. 11, 2006, pp. 1619-1624.
[25] Na, S., Ridgeway, S., and Cao. L., “Theoretical and Experimental Study of Fluid Behavior of a Peristaltic Micropump,” Proceedings of the 15th Biennial University /Government/Industry Microelectronics Symposium, Boise Idaho, July 2003, pp. 312-316.
[26] Cao, L., Mantell, S., and Polla, D., “Design and Simulation of an Implantable Medical Drug Delivery System Using Microelectromechanical Systems Technology,” Sensors and Actuators A: Physical, Vol. 94, No. 1-2, October 2001, pp. 117-125.
[27] Cao, L., Mantell, S., and Polla, D., “Implantable Medical Drug Delivery Systems Using Microelectromechanical Systems Technology,” 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Lyon, Fracne, October 2000, pp. 487-490.
[28] Wackerle, M., Richter, M., Drost, A., Schaber, U., and Bigus, H. J., “A Bi-directional Micro Pump for the Handling of Liquids and Gases,” Actuator 2004:9th International Conference on New Actuators, Bremen, Germany, June 2004, pp. 216-219.
[29] Bar-Cohen Y. and Chang, Z., “Piezoelectrically Actuated Miniature Peristaltic Pump,” Proceedings of SPIE's 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, California, USA, March 2000, pp. 3992-103-1 to 3992-103-8.
[30] Yang, H., Tsai, T. H., and Hu, C. C. “Portable Valve-less Peristaltic Micropump Design and Fabrication,” Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS - DTIP, Nice, France, April 2008, pp. 273-278.
[31] Hsu, Y. C., Le, N. B., Lin, M. S., and Jang, L. S., “Optimum Design and Investigation on Diffuser Polymethylmethacrylate (PMMA) Peristaltic Micropumps,” Proceedings of the 2009 IEEE international conference on Robotics and Automation, Kobe, Japan, May 2009, pp. 3013-3018.
[32] Johnston, I. D., Davis, J. B., Richter, R., Herbert, G. I., and Tracey, M. C., “Elastomer-glass Micropump Employing Active Throttles,” The Analyst, Vol. 129, No. 9, July 2004, pp. 829-834.
[33] Lin, Q., Yang, B., Xie, J., and Tai, Y. C., “Dynamic Simulation of a Peristaltic Micropump Considering Coupled Fluid Flow and Structural Motion,” Journal of Micromechanics and Microengineering, Vol. 17, No. 2, 2007, pp. 220-228.
[34] Xie, J., Shih, J., Lin, Q., Yang, B., and Tai, Y. C., “Surface Micromachined Electrostatically Actuated Micro Peristaltic Pump,” Lab on a Chip, Vol. 4, No. 5, 2004, pp. 495-501.
[35] Lotz, P., Matysek, M., and Schlaak, H. F., “Peristaltic Pump Made of Dielectric Elastomer Actuators,” Proceedings of SPIE, Vol. 7287, April 2009, pp. 72872D-1 to 72872D-8.
[36] Judy, J. W., Tamagawa, T., and Polla, D. L., “Surface-machined Micromechanical Membrane Pump,” Proceedings of IEEE Micro Electro Mechanical Systems, Nara, Japan, February 1991, pp. 182-186.
[37] Teymoori, M. M., and Abbaspour-Sani, E., “Design and Simulation of a Novel Electrostatic Peristaltic Micromachined Pump for Drug Delivery Applications,” Sensors and Actuators A: Physical, Vol. 117, No. 2, 2005, pp. 222-229.
[38] Boden, R., Hjort, K., Schweitz, J. A., and Simu, U., “A Metallic Micropump for High-pressure Microfluidics,” Journal of Micromechanics and Microengineering, Vol. 18, No. 11, 2008, pp. 115009-1 to 115009-7.
[39] Grosjean, C., and Tai, Y.C., “A Thermopneumatic Peristaltic Micropump,” International Conference on Solid-state Sensors and Actuators (Transducers ’99), Sendai, Japan, June 1999, pp. 1776-1779.
[40] Yang, Y. J., and Liao, H. H., “Development and Characterization of Thermopneumatic Peristaltic Micropumps,” Journal of Micromechanics and Microengineering, Vol. 19, No. 2, 2009, pp. 025003-1 to 025003-13.
[41] Jeong, O. C., Park, S. W., Yang, S. S., and Pak, J. J., “Fabrication of a Peristaltic PDMS Micropump,” Sensors and Actuators A: Physical, Vol. 123–124, 2005, pp. 453-458.
[42] Chia, B. T., Liao, H. H., and Yang, Y. J., “A Novel Thermo-pneumatic Peristaltic Micropump with Low Temperature Elevation on Working Fluid,” Sensors and Actuators A: Physical, Vol. 165, No. 1, 2011, pp. 86-93.
[43] Chia, B. T., Liao, H. H., and Yang, Y. J., “A Novel Thermo-pneumatic Peristaltic Micropump with Low Temperature Elevation,” International Conference on Solid-state Sensors and Actuators (Transducers 2009), Denver, Colorado, USA, June 2009, pp. 2286-2289.
[44] Knight, M., and House, J., “Design and Fabrication of a Peristaltic Micropump,” Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS - DTIP, Cannes-Mandelieu, France, May 2003, pp. 290-294.
[45] Knight, M., and House, J., “Design, Fabrication, and Test of a Peristaltic Micropump,” Microsystem Technologies, Vol. 10, No. 5, 2004, pp. 426-431.
[46] Tuantranont, A., Mamanee, W., Lomas, T., Porntheerapat, N., Afzulpurkar, N.V., and Wisitsoraat, A., “A Three-stage Thermopneumatic Peristaltic Micropump for PDMS-based Micro/Nanofluidic Systems,” Proceedings of the 7th IEEE International Conference on Nanotechnology, Hong Kong, August 2007, pp. 1203-1206.
[47] Mamanee, W., Tuantranont, A., Afzulpurkar, N. V., Porntheerapat, N., Rahong, S., and Wisitsoraat, A., “PDMS Based Thermopnuematic Peristaltic Micropump for Microfluidic Systems,” Journal of Physics: Conference Series, Vol. 34, 2006, pp. 564-569.
[48] Folta, J. A., Raley, N. F., and Hee, E. W., “Design, Fabrication and Testing of a Miniature Peristaltic Membrane Pump,” 5th Technical Digest IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, USA, June 1992, pp. 186-189.
[49] Wu, M. H., Huang, S. B., and Lee, G. B , “A High Throughput Microfluidic Liquid Pumping System Based on Pneumatic Micropump with Serpentine Layout,” The 4th Asia Pacific Conference on Tranducers and Micro/Nano Technologies (APCOT), Tainan, Taiwan, June 2008, pp. 1-4.
[50] Huang, S. B., Wu, M. H., Cui, Z. F., Cui, Z., and Lee, G. B., “A Membrane-based Serpentine-shape Pneumatic Micropump with Pumping Performance Modulated by Fluidic Resistance,” Journal of Micromechanics and Microengineering, Vol. 18, No. 4, 2008, pp. 045008-1 to 045008-12.
[51] Wang, C. H., and Lee, G. B., “Pneumatically Driven Peristaltic Micropumps Utilizing Serpentine-shape Channels,” Journal of Micromechanics and Microengineering, Vol. 16, No. 2, 2006, pp. 341-348.
[52] Goulpeau, J., Trouchet, D., Ajdari, A., and Tabeling, P., “Experimental Study and Modeling of Polydimethylsiloxane Peristaltic Micropumps,” Journal of Applied Physics, Vol. 98, No. 4, 2005, pp. 044914-1 to 044914-9.
[53] Li, B., Schwarz, T., and Sharon, A., “Implementation of Microfluidic Devices at a Transparency,” Journal of Micromechanics and Microengineering, Vol. 16, No. 12, 2006, pp. 2639-2645.
[54] Inman, W., Domansky, K., Serdy, J., Owens, B., Trumper, D., and Griffith, L. G., “Design, Modeling and Fabrication of a Constant Flow Pneumatic Micropump,” Journal of Micromechanics and Microengineering, Vol. 17, No. 5, 2007, pp. 891-899.
[55] Chuang, H. S., Amin, A. M., Wereley, S. T., Thottethodi, M., Vijaykumar T. N., and Jacobson, S. C., “Polydimethylsiloxane (PDMS) Peristaltic Pump Characterization for Programmable Lab-on-a-Chip Applications”, Proceedings of the 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS 2008), San diego, CA, October 2008, pp. 1681-1683.
[56] Jeong, O. C., Morimoto, T., Watanabe, Y., and Konishi S., “Peristaltic PDMS Pump with Perfect Dynamic Valves for Both Gas and Liquid,” 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2006), Istanbul, Turkey, January 2006, pp. 782-785.
[57] Jeong, O. C., and Konishi, S., “Fabrication of a Peristaltic Micro Pump with Novel Cascaded Actuators,” Journal of Micromechanics and Microengineering, Vol. 18, No. 2, 2008, pp. 025022-1 to 025022-1.
[58] Wang, C. H., and Lee, G. B., “Automatic Bio-sampling Chips Integrated with Micro-pumps and Micro-valves for Disease Detection,” Biosensors and Bioelectronics, Vol. 21, No. 3, 2005, pp. 419-425.
[59] Berg, J. M., Anderson, R., Anaya, M., Lahlouh, B., Holtz, M., and Dallas, T., “A Two-stage Discrete Peristaltic Micropump,” Sensors and Actuators A: Physical, Vol. 104, No. 1, 2003, pp. 6-10.
[60] Jeong, O. C., and Konishi, S., “The Self-generated Peristaltic Motion of Cascaded Pneumatic Actuators for Micro Pumps,” Journal of Micromechanics and Microengineering, Vol. 18, No. 8, 2008, pp. 085017-1 to 085017-1.
[61] Jeong, O. C., and Konishi, S., “Self-generated Peristaltic Motion of Cascaded Diaphragm Actuators for Micro Fluidic Systems” 20th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2007), Kobe, Japan, January 2007, pp. 135-138.
[62] Jeong, O. C., and Konishi, S., “Fabrication and Drive Test of Pneumatic PDMS Micro Pump,” Sensors and Actuators A: Physical, Vol. 135, No. 2, 2007, pp. 849-856.
[63] Jeong, O. C., and Konishi, S., “Fabrication of Peristaltic Micropump Driven by a Single-Phase Pneumatic Force,” Japanese Journal of Applied Physics, Vol. 49, No. 5, 2010, pp. 056506-1 to 056506-5.
[64] Wu, M. H., Huang, S. Bin, Cui, Z. F., Cui, Z., and Lee, G. B., “Development of Perfusion-based Micro 3-D Cell Culture Platform and its Application for High Throughput Drug Testing,” Sensors and Actuators B: Chemical, Vol. 129, No. 1, 2008, pp. 231-240.
[65] Lee, S., Yee, S. Y., Besharatian, A., Kim, H., Bernal, L. P., and Najafi, K., “Adaptive Gas Pumping by Controlled Timing of Active Microvalves in Peristaltic Micropumps,” International Conference on Solid-state Sensors and Actuators (Transducers 2009), Denver, Colorado, USA, June 2009, pp. 2294-2297.
[66] Kim, H., Astle, A. A., Najafi, K., Bernal, L. P., and Washabaugh, P. D., “A Fully Integrated High-efficiency Peristaltic 18-stage Gas Micropump with Active Microvalves” 20th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2007), Kobe, Japan, January 2007, pp. 131-134.
[67] Oh, K. W., Rong, R., and Ahn, C. H., “Miniaturization of Pinch-type Valves and Pumps for Practical Micro Total Analysis System Integration,” Journal of Micromechanics and Microengineering, Vol. 15, No. 12, 2005, pp. 2449-2455.
[68] Pilarski, P. M., Adamia, S., and Backhouse, C. J., “An Adaptable Microvalving System for on-Chip Polymerase Chain Reactions,” Journal of Immunological Methods, Vol. 305, No. 1, 2005, pp. 48-58.
[69] Trenkle, F., Haeberle, S., and Zengerle, R., “Normally-closed Peristaltic Micropump with Re-usable Actuator and Disposable Fluidic Chip,” Procedia Chemistry, Vol. 1, No. 1, 2009, pp. 1515-1518.
[70] Koch, C., Remcho, V., and Ingle, J., “PDMS and Tubing-based Peristaltic Micropumps with Direct Actuation,” Sensors and Actuators B: Chemical, Vol. 135, No. 2, 2009, pp. 664-670.
[71] Du, M., Ye, X., Wu, K., and Zhou, Z. “A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls,” Sensors, Vol. 9, No. 4, 2009, pp. 2611-2620.
[72] Kim, E. G., Sim, W. C., Oh, J., and Choi, B., “A Continuous Peristaltic Micropump Using Magnetic Fluid,” 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology, Madison, Wisconsin, USA, May 2002, pp. 509-513.
[73] Yobas, L., Tang, K. C., Yong, S. E., and Kye-Zheng Ong, E., “A Disposable Planar Peristaltic Pump for Lab-on-a-Chip,” Lab on a Chip, Vol. 8, No. 5, 2008, pp. 660-662.
[74] Kim, E. G., Oh, J., and Choi, B., “A Study on the Development of a Continuous Peristaltic Micropump Using Magnetic Fluids,” Sensors and Actuators A: Physical, Vol. 128, No. 1, 2006, pp. 43-51.
[75] Pan T., Kai E., Stay M., Barocas, V., and Ziaie B., “A Magnetically Driven PDMS Peristaltic Micropump,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA , September 2004, pp. 2639-2642.
[76] Shen, M., and Gijs, M. A. M., “High Performance Magnetic Active-valve Micropump,” International Conference on Solid-state Sensors and Actuators (Transducers 2009), Denver, Colorado, USA, June 2009, pp. 1234-1237.
[77] Shen, M., Dovat, L., and Gijs, M. A. M., “Magnetic Active-valve Micropump Actuated by a Rotating Magnetic Assembly,” Sensors and Actuators B: Chemical, Vol. 154, No. 1, 2011, pp. 52-58.
[78] Yang, K. S., Chen, I. Y., and Wang, C. C., “Performance of Nozzle/Diffuser Micro-Pumps Subject to Parallel and Series Combinations,” Chemical Engineering and Technology, Vol. 29, No. 6, 2006, pp. 703-710.
[79] Azarbadegan, A., Cortes-Quiroz, C. A., Eames, I., and Zangeneh, M., “Analysis of Double-Chamber Parallel Valveless Micropumps,” Microfluidics and Nanofluidics, Vol. 9, No. 2-3, 2010, pp. 171-180.
[80] Guu, Y. H., Hocheng, H., and Chang, C. H., “Study of Piezoelectrically Actuated Micropumps with Multiple Parallel Chambers,” Materials and Manufacturing Processes, Vol. 23, No. 2, 2008, pp. 209-214.
[81] Loudon, C., and Tordesillas, A., “The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow,” Journal of Theoretical Biology, Vol. 191, No. 1, 1999, pp. 63-78.
[82] Akhavan, R., Kammz, R. D., and Shapiro, A. H., “An Investigation of Transition to Turbulence in Bounded Oscillatory Stokes Flows Part 1. Experiments,” Journal of Fluid Mechanics, Vol. 225, 1999, pp. 395-422.
[83] Jiang, P. C., “Fe-PDMS Composite Membrane for Microfluidic Chip Applications,” Master Thesis, Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2009.
[84] Leu, T. S., and Jiang, P. C., Fe-PDMS Fabricated Microchannels for Peristaltic Pump Applications,” Proceedings of the 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, January 2010, pp. 646-649.
[85] Nagel, J. J., Mikhail, G., Noh, H., and Koo, J., “Magnetically Actuated Micropumps Using an Fe-PDMS Composite Membrane,” Proceedings of SPIE on Smart Structures and Materials: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, Vol. 6172, March 2006, pp. 617213-1 to 617213-9.
[86] Guo, S., Sun, X., Ishii, K., and Guo, J., “SMA Actuator-based Novel Type of Peristaltic Micropump,” Proceedings of the 2008 IEEE International Conference on Information and Automation, Zhangjiajie, China, June 2008, pp. 1620-1625.
[87] Sun, X., Hao, Y., Guo, S., Ye, X., and Yan, X., “The Development of a New Type of Compound Peristaltic Micropump,” Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, February 2009, pp. 698-702.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw