進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1307202020523600
論文名稱(中文) 以多準則決策方法構建高速公路交流道連絡道管理之評估架構
論文名稱(英文) An Evaluation Framework for Expressway Interchange Access Management Using Multiple Criteria Decision-Making Method
校院名稱 成功大學
系所名稱(中) 交通管理科學系
系所名稱(英) Department of Transportation & Communication Management Science
學年度 108
學期 2
出版年 109
研究生(中文) 畢雅涵
研究生(英文) Ya-Han PI
電子信箱 sallybi669@gmail.com
學號 R56071135
學位類別 碩士
語文別 中文
論文頁數 95頁
口試委員 指導教授-胡守任
指導教授-李威勳
口試委員-胡大瀛
口試委員-王中允
口試委員-褚志鵬
中文關鍵字 高速公路交流道  連絡道  增設及改善交流道  分析網路程序法 
英文關鍵字 Expressway interchange  Access roads  Adding and Improving Interchanges  Analytic Network Process 
學科別分類
中文摘要 交通部高速公路局訂定「高速公路增設及改善交流道設置原則」主要的目的在於確保增設或改善交流道可以有效達到預期的工程效益,但過去相關案例的審議的結果常囿於「因交流道設置不當,不但無法達到應有之效益,反而減低高速公路服務水準。」因此,高公局擬新增評點項目「充分條件(八):確保交流道運轉效率」,然而高速公路連接地方道路的交通影響因素眾多,且各項評點項目之間的重要性缺乏客觀的權重比較,因此有必要進行深入的研究與評析。
本研究透過文獻回顧與過去相關案例有關連絡道管理運作現狀之檢討,了解影響高速公路交流道連絡道管理的可能因素,並透過多準則決策方法中的分析網路程序法之應用,計算七項充分條件的相對權重,以及連絡道運作與管理準則的相對權重,最後利用Visual Basic程式設計語言構建自動化的評分表單,最後透過案例分析,探討完整型交流道與簡易型交流道是否會因設計型式不同,而影響充分條件八之評分結果。在分析網路程序法的應用方面,本研究透過專家學者的問卷調查,經分析後得出七項充分條件的相對權重值,其中充分條件(三)維持主線運轉水準,相對權重為0.264與充分條件(一)滿足城際運輸需求,相對權重為0.262,為重要性較高的兩項充份條件。在新增充分條件八的分析中,增進高速公路側效率相對權重較高,為0.515;在增進高速公路側效率中,減速車道長度較高,相對權重為0.558。在增進連絡道側效率中,空間距離最為重要,相對權重為0.209,其次為鄰接道路,相對權重為0.189;反之,相對權重最低的為轉角淨距,相對權重0.118,在車道設施中,最為重要的是分隔設施,相對權重為0.392;反之,重要性最低的是迴轉車道,相對權重為0.106。最後,案例分析結果顯示,簡易型交流道評估分數皆低於完整型交流道,顯示交流道設計型式,確實會影響高速公路交流道區域的運轉效率。
透過本研究所建立的高速公路交流道連絡道管理之評估架構,針對七項充分條件的客觀權重與新增充分條件八的相關建議,預計可以提供主管機關未來審議高速公路增設及改善交流道相關申請案時之參考,預期可以有效改善高速公路與連絡道的整體服務水準。
英文摘要 The main purpose of the "Principle of Adding and Improving Interchanges of Expressway" released by the Freeway Bureau, MOTC is to ensure that the addition or improvement of interchanges can achieve the expected benefits. The Freeway Bureau, MOTC plans to add a new evaluation criterion "Sufficient Condition 8-Maintain the Operational Efficiency", but there are many factors influencing the operation of expressway access roads, and the existing seven evaluation criteria do not have the objective weights. Thereby, it is necessary to conduct an in-depth study to resolve the above research questions.
This study conducts literature review and refers to the status of the access management of the new or improved interchanges in the last decade to explore the factors affecting expressway interchange access management. The present study applies the Analytic Network Process (ANP) in the Multiple Criteria Decision-Making Method to calculate the weights of seven sufficient condition and the relative weights of the access management criteria. Then, this study applies Visual Basic to build a scoring form and investigates whether the complete and simple type interchanges will be different by a case study. In this study, we analyzed the weights of seven sufficient condition through expert questionnaire survey. As a result, this study indicated the weight of each sufficient condition. In the analysis of the addition of Sufficient Condition 8, this study obtains the weights of the criteria could affect the access management and offer suggestions of sufficient condition eight. Finally, the case study results indicating that the design type of the interchange will affect the operation efficiency of the expressway interchange area.
This study proposes an evaluation framework for expressway interchange access road management by providing the weights of seven sufficient condition and the newly added sufficient condition. It is expected to provide the expressway authority with beneficial information in evaluating relevant application projects. The goal is to improve the overall LOS of the expressways and access roads.
論文目次 摘要 i
Extended Abstract ii
致謝 v
目錄 vii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 4
1.3 研究範疇 4
1.4 研究流程 7
第二章 文獻回顧 9
2.1 高速公路交流道的連接管理 9
2.2 連絡道管理技術 13
2.2.1 空間距離 13
2.2.2 號誌化路口距離 15
2.2.3 轉角淨距 18
2.2.4 分隔設施 20
2.2.5 左轉專用道 22
2.2.6 迴轉車道 23
2.2.7 加速車道 24
2.2.8 車道數 25
2.2.9 鄰接道路 26
2.2.10 最近旅次點 26
2.3 高速公路側管理技術 27
2.3.1 減速車道長度 27
2.3.2 出口匝道長度 28
2.4 國道增設及改善交流道交通狀況探討 28
2.5 小結 33
第三章 研究方法 34
3.1 多準則決策方法 34
3.1.1 層級分析法 35
3.1.2 分析網路程序法 38
3.2 評估指標架構 40
第四章 實證研究 43
4.1 七項充分條件分析 43
4.2 充分條件八分析 45
4.3 目標交流道現況 48
第五章 評分表單 51
5.1 表單架構 51
5.2 案例分析 57
5.2.1 數值標準化 57
5.2.2 計算結果 58
第六章 結果與討論 60
6.1 七項充分條件分析結果 60
6.2 充分條件八分析結果 61
第七章 結論與建議 64
7.1 結論 64
7.2 貢獻 65
7.3 建議 66
參考文獻 67
附錄一 高速公路增設及改善交流道設置原則 73
附錄二 專家問卷 81
附錄三 超級矩陣表 90
參考文獻 中文部分
1. 交通部高速公路局,「高速公路增設及改善交流道設置原則(修正草案)」簡報資料,交通部高速公路局,2018年1月30日。
2. 交通部高速公路局,「高速公路增設及改善交流道設置原則」,https://www.freeway.gov.tw/Publish.aspx?cnid=526&p=5390。
3. 交通部高速公路局,高速公路交流道、服務區里程一覽表(含交流道示意圖),https://www.freeway.gov.tw/Publish.aspx?cnid=1906,擷取時間:2019年8月4日 。
4. 交通部運輸研究所,2011年臺灣公路容量手冊,中華民國 100 年 10 月。
5. 張紹勳(2012)模糊多準則評估法及統計,臺灣五南圖書出版股份有限公司。
6. 張魁峯(2008)Super decisions 軟體操作手冊:以ANP突破AHP的研究限制, 鼎茂圖書。
7. 曾國雄、鄧振源(1989)層級分析法(AHP)的內涵特性與應用(下),中國統計學報。
8. 馮正民、邱裕鈞(2004)研究分析方法,建都文化,新竹。
9. 鄧振源(2005)計畫評估-方法與應用第二版,基隆市:國立臺灣海洋大學運籌規劃與管理研究中心。
英文部分
1. American Association of State Highway and Transportation Officials (2004). Policy on Geometric Design of Highways and Streets: Washington, D.C., U.S.A.
2. Bared, J., Giering, G. L., & Warren, D. L. (1999). Safety evaluation of acceleration and deceleration lane lengths. ITE Journal, 69, 50-54.
3. Bodin, L., & Gass, S. I. (2003). On teaching the analytic hierarchy process. Computers & operations research, 30(10), 1487-1497.
4. Bowman, B. L., & Vecellio, R. L. (1994). Effect of urban and suburban median types on both vehicular and pedestrian safety. Transportation Research Record(1445).
5. Butorac, M., & Wen, J. C. (2004). NCHRP Synthesis 332: Access management on crossroads in the vicinity of interchanges. Transportation Research Board of the National Academies, Washington, DC.
6. Combinido, J. S. L., & Lim, M. T. (2010). Modeling U-turn traffic flow. Physica A: Statistical Mechanics and its Applications, 389(17), 3640-3647.
7. Diehl, J. (2001). Ecodesign methodology development From linear hierarchies to nonlinear networks. European Journal of operational research, 26, 229-237.
8. Ewing, R. (1992). Roadway levels of service in an era of growth management. Transportation Research Record, 1364, 63.
9. Flintsch, A. M., Rakha, H., Arafeh, M., Dua, D., Abdel-Salam, A.-S. G., & Abbas, M. (2008). Safety impacts of access control standards on crossroads in the vicinity of highway interchanges. Transportation Research Record, 2075(1), 42-52.
10. Günther, G., Coeymans, J. E., Muñoz, J. C., & Herrera, J. C. (2012). Mitigating freeway off-ramp congestion: A surface streets coordinated approach. Transportation research part C: emerging technologies, 20(1), 112-125.
11. Garcia, A., & Romero, M. A. (2006). Experimental observation of vehicle evolution on deceleration lanes with different lengths. Retrieved from
12. Gluck, J., Levinson, H. S., & Stover, V. (1999). NCHRP Report 420: Impacts of access management techniques. TRB, National Research Council, Washington, DC, 4.
13. Gordon, R. L., Tighe, W., & Siemens, I. (2005). Traffic control systems handbook. Retrieved from
14. Guinn, C. R. (1978). Travel Time Empirical Study. Retrieved from
15. Harwood, D. W. (1995). Median intersection design (Vol. 375): Transportation Research Board.
16. Ho, W. (2008). Integrated analytic hierarchy process and its applications–A literature review. European Journal of operational research, 186(1), 211-228.
17. ITE Technical Committee. (1985). Effectiveness of Median Storage and Acceleration Lanes for Left-Turning Vehicles. ITE Journal, 55(3).
18. Kockelman, K. M., Machemehl, R., Overman, A. W., Sesker, J., Madi, M., Peterman, J., & Handy, S. (2003). Frontage roads: Assessment of legal issues, design decisions, costs, operations, and land-development differences. Journal of Transportation Engineering, 129(3), 242-252.
19. Krause, C., Kronpraset, N., Bared, J., & Zhang, W. (2014). Operational advantages of dynamic reversible left-lane control of existing signalized diamond interchanges. Journal of Transportation Engineering, 141(5), 04014091.
20. Layton, R. (1996). Background Paper No. 2, Interchange Access Management, prepared for Oregon Department of Transportation.
21. Liu, P., Lu, J. J., & Chen, H. (2008). Safety effects of the separation distances between driveway exits and downstream U-turn locations. Accident Analysis & Prevention, 40(2), 760-767.
22. Long, G., Gan, C.-T., & Morrison, B. S. (1993). Safety impacts of selected median and access design features.
23. Margiotta, R., Cohen, H., Morris, R., Elkins, G., Venigalla, M., & Rathi, A. (1993). Speed determination models for the highway performance monitoring system. Science Applications International Corporation, Cambridge Systematics, Inc., Nichols Consulting Engineers, Chtd., and University of Tennessee, FHWA Contract No. OTFH61-92-R00022 (October 1993).
24. Murthy, S. (1992). Effect of median jersey barrier on two-lane highway. Paper presented at the 1992 Compendium of Technial Papers. Institute of Transportation Engineers Annual Meeting.
25. Netherton, R. D. W. (1963). Control of highway access: University of Wisconsin Press.
26. Neudorff, L. G., Randall, J., Reiss, R. A., & Gordon, R. L. (2003). Freeway management and operations handbook. Retrieved from
27. New York State Department of Transportation (December 17, 1984). Mean Accident Rates on State Highways.
28. Noland, R. B., & Oh, L. (2004). The effect of infrastructure and demographic change on traffic-related fatalities and crashes: a case study of Illinois county-level data. Accident Analysis & Prevention, 36(4), 525-532.
29. Papayannoulis, V., Gluck, J. S., Feeney, K., & Levinson, H. S. (1999). Access spacing and traffic safety. Paper presented at the Urban Street Symposium.
30. Parker, M. R. (1983). Design guidelines for raised and traversable medians in urban areas. Retrieved from
31. Polus, A., & Livneh, M. (1987). Comments on flow characteristics on acceleration lanes. Transportation Research Part A: General, 21(1), 39-46.
32. Rakha, H., Flintsch, A. M., Arafeh, M., Abdel-Salam, A.-S. G., Dua, D., & Abbas, M. (2008). Access Control Design on Highway Interchanges. Retrieved from
33. Reilly, W. R. (1989). Speed-change Lanes: JHK & Associates.
34. Rudjanakanoknad, J. (2012). Capacity change mechanism of a diverge bottleneck. Transportation Research Record, 2278(1), 21-30.
35. Saaty, T. (1980). The analytical hierarchy process: Planning, priority setting, resource allocation. Decision Making Series, McGraw Hill, New York, USA.
36. Saaty, T. L. (1990). Decision making for leaders: the analytic hierarchy process for decisions in a complex world: RWS publications.
37. Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process (Vol. 4922): RWS Publ.
38. Saaty, T. L., & Kearns, K. P. (1985). Analytic planning. Organization of systems. In: Oxford: Pergamon.
39. Saaty, T. L., & Takizawa, M. (1986). Dependence and independence: From linear hierarchies to nonlinear networks. European Journal of operational research, 26(2), 229-237.
40. Schultz, G. G., Allen, C. G., & Boschert, T. (2010). Making the most of an existing system through access management at major arterial intersections. Transportation Research Record, 2171(1), 66-74.
41. Schultz, G. G., Braley, K. T., & Boschert, T. (2009). Relationship between access management and other physical roadway characteristics and safety. Journal of Transportation Engineering, 136(2), 141-148.
42. Spiliopoulou, A., Kontorinaki, M., Papamichail, I., & Papageorgiou, M. (2013). Real-time route diversion control at congested motorway off-ramp areas-Part I: User-optimum route guidance. Paper presented at the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).
43. Squires, C. A., & Parsonson, P. S. (1989). Accident comparison of raised median and two-way left-turn lane median treatments. Transportation Research Record, 1239, 30-40.
44. State of Florida Department of Transportaton. (2014). Median Handbook.
45. Stover, V. G., Adkins, W. G., & Goodknight, J. C. (1970). Guidelines for Medial and Marginal Access Control on Major Roadways: Highway Research Board, National Research Council.
46. Teply, S., Allingham, D., Richardson, D., & Stephenson, B. (2008). Canadian capacity guide for signalized intersections.
47. Wang, Z. (2013). Queue storage design for metered on-ramps. International Journal of Transportation Science and Technology, 2(1), 47-63.
48. Williams, K. M., Stover, V. G., Dixon, K. K., & Demosthenes, P. (2014). Access management manual.
49. Xu, X., Teng, H., Kwigizile, V., & Mulokozi, E. (2014). Modeling signalized-intersection safety with corner clearance. Journal of Transportation Engineering, 140(6), 04014016.
50. Yang, X., Iida, Y., Uno, N., & Yang, P. (1996). Dynamic Traffic Control System for Urban Expressway with Constraint of Off-Ramp Queue Length. Paper presented at the Intelligent Transportation: Realizing the Future. Abstracts of the Third World Congress on Intelligent Transport SystemsITS America.
51. Zhao, J., Liu, Y., & Yang, X. (2015). Operation of signalized diamond interchanges with frontage roads using dynamic reversible lane control. Transportation research part C: emerging technologies, 51, 196-209.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-06-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-06-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw