
系統識別號 
U00261307201809175700 
論文名稱(中文) 
生醫鈦合金(Ti29Nb13Ta4.6Zr)在不同溫度下之高速撞擊特性與微觀組織分析 
論文名稱(英文) 
Dynamic impact response and microstructural evolution of Ti29Nb13Ta4.6Zr biomedical alloy under high strain rate and various temperatures 
校院名稱 
成功大學 
系所名稱(中) 
機械工程學系 
系所名稱(英) 
Department of Mechanical Engineering 
學年度 
106 
學期 
2 
出版年 
107 
研究生(中文) 
高子桓 
研究生(英文) 
TzuHuan Kao 
學號 
N16054695 
學位類別 
碩士 
語文別 
中文 
論文頁數 
135頁 
口試委員 
指導教授李偉賢 口試委員施士塵 口試委員黃永茂

中文關鍵字 
Ti29Nb13Ta4.6Zr合金
霍普金森桿
高溫
高應變速率
絕熱剪切帶
差排

英文關鍵字 
Ti29Nb13Ta4.6Zr
Hopkinson bar
high temperature
high strain rate
dislocation density

學科別分類 

中文摘要 
本文主要是利用霍普金森高速撞擊試驗機及加熱裝置，來探討Ti29Nb13Ta4.6Zr生醫鈦合金在不同溫度及高應變速率荷載下之塑性變形行為及微觀結構分析。分別於實驗溫度25°C、500°C、750°C及應變速率2500s1、3500s1、5000 s1條件下，進行高速撞擊實驗，藉以分析材料在塑變行為中巨觀機械性質變化，再利用(OM、TEM)對微觀結構進行分析，以了解應變速率及溫度對材料塑性變形行為與微觀結構的影響；並由構成方程式來描述巨觀及微觀之關係。
實驗結果顯示，Ti29Nb13Ta4.6Zr在相同溫度下，其塑流應力值、加工硬化率、及應變速率敏感性係數、溫度敏感性係數及理論溫升量，皆隨應變速率上升而上升；而當應變速率固定時，塑流應力值、加工硬化率、及應變速率敏感性係數、溫度敏感性係數及理論溫升量，皆隨溫度值上升而下降。而熱活化體積與活化能，在固定溫度下，則隨應變速率上升而下降；而在應變速率固定下，則隨溫度上升而上升。而各條件下之塑變行為皆可利用ZerilliArmstrong構成方程式進行模擬，並可作為工程模擬分析時之應用。
在光學顯微鏡(OM)之金相觀察中，可發現本材料為純β相之鈦合金，且在25°C，5000 s1之條件下可發現絕熱剪切帶之形成與晶粒組織形貌之改變；在穿透式電子顯微鏡(TEM)觀察下，可發現差排密度隨著應變速率上升而上升，隨著溫度下降而下降，此外，隨著應變速率的上升，可以觀測到差排環的產生。最後結合巨觀與微觀之結果顯示，BaileyHirsch方程式可準確描述塑流應力值與差排密度之關係。
關鍵字：Ti29Nb13Ta4.6Zr合金、霍普金森桿、高溫、高應變速率、絕熱剪切帶、差排

英文摘要 
SUMMARY
In this study, dynamic impact response and microstructural evolution of Ti29Nb13Ta4.6Zr biomedical alloy under high strain rates, ranging from 2500s1 to 5000s1 and various temperatures of 25°C, 500°C, and 750°C were investigated by using splitHopkinson pressure bar.
The results show that the mechanical properties of Ti29Nb13Ta4.6Zr are strongly affected by strain rate and temperature. For instance, for a given temperature, the flow stress, work hardening rate, strain rate sensitivity, temperature sensitivity, and theoretical temperature rise all increase with the increasing strain rate, but decrease with the increasing temperature. However, the thermal activation volume and the activation energy turn out to have the exact opposite result. The ZerilliArmstrong constitutive law can be used to precisely describe the deformation behavior of Ti29Nb13Ta4.6Zr under different strain rates and temperatures.
The optical microstructure shows that Ti29Nb13Ta4.6Zr has a pure β type titanium alloy as expected. In addition, adiabatic shear band can be observed at high strain rate of 5000s1 and 25°C. The transmission electron microscopic observations show that the dislocation density increases with the increasing strain rate or the decreasing temperature. Moreover, dislocation cells can be observed as strain rate is higher than 2500s1. The relationship between the dislocation density and the flow stress can be described by using BaileyHirsch equation.
Key words: Ti29Nb13Ta4.6Zr, Hopkinson bar, high temperature, high strain rate, dislocation density

論文目次 
總目錄
中文摘要 I
abstract III
致謝 XII
總目錄 XIII
表目錄 XVI
圖目錄 XVII
符號說明 XXV
第一章 前言 1
第二章 理論與文獻回顧 5
21 鈦與鈦合金之介紹 5
211生醫鈦合金介紹 6
212 Ti29Nb13Ta4.6Zr合金介紹 6
213 Ti29Nb13Ta4.6Zr合金成份之影響[20, 21] 7
22 塑性變形之機械測試類別 8
221 靜態或極低之應變速率（108＜ε＜105 s1）： 8
222 低速之應變速率（105＜ε＜100 s1）： 8
223 中速之應變速率（100＜ε＜102 s1）： 9
224 高速之應變速率（102＜ε＜104 s1）： 9
225 極高速之應變速率（104＜ε＜107 s1）： 9
23一維波傳理論 10
24霍普金森撞擊試驗機之原理 12
25材料塑性變行機制與特性 14
251 恆溫機制 15
252熱活化機制 16
253差排黏滯機制 17
26絕熱剪切 18
27構成方程式 19
271 Ludwik model[3840] 20
272 Sokolosky& Malvern model[40] 20
273 JohnsonCook model[4144] 20
274 ZerilliArmstrong model[45, 46] 21
第三章 實驗方法及步驟 37
31 實驗流程 37
32 實驗設備與儀器 37
321 金相研磨拋光機 37
322 CNC線切割機 38
323 霍普金森桿撞擊試驗機 38
324 加熱爐 39
325鑽石刀片切割機 40
326 雙噴式電解拋光機 40
327 光學顯微鏡(OM) 40
328 穿透式電子顯微鏡 40
33 實驗步驟 41
331 實驗試件之製備 41
332 動態衝擊試驗 41
334 試件金相之觀察(OM) 42
335 穿透式電子顯微鏡(TEM)試片製備 43
第四章 實驗結果與討論 45
41應力應變曲線 45
42加工硬化率 46
43應變速率敏感性係數 47
44熱活化體積 48
45活化能 50
46溫度敏感性係數 51
47理論溫升量 52
48材料構成方程式 53
49光學顯微鏡金相組織觀察(OM) 55
410穿透式電子顯微鏡(TEM)結構觀察 56
第五章 結論 127
參考文獻 130

參考文獻 
參考文獻
[1] M. A. Meyers, Dynamic behavior of materials. John wiley & sons, 1994.
[2] H. Kolsky, "An investigation of the mechanical properties of materials at very high rates of loading," Proceedings of the Physical Society. Section B, vol. 62, no. 11, p. 676, 1949.
[3] M. Niinomi, "Mechanical properties of biomedical titanium alloys," Materials Science and Engineering: A, vol. 243, no. 12, pp. 231236, 1998.
[4] M. Niinomi, "Fatigue performance and cytotoxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6 Zr," Biomaterials, vol. 24, no. 16, pp. 26732683, 2003.
[5] Q. Li, M. Niinomi, J. Hieda, M. Nakai, and K. Cho, "Deformationinduced ω phase in modified Ti–29Nb–13Ta–4.6 Zr alloy by Cr addition," Acta biomaterialia, vol. 9, no. 8, pp. 80278035, 2013.
[6] M. Ikeda, S.Y. Komatsu, I. Sowa, and M. Niinomi, "Aging behavior of the Ti29Nb13Ta4.6 Zr new beta alloy for medical implants," Metallurgical and Materials Transactions A, vol. 33, no. 3, pp. 487493, 2002.
[7] N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, and H. Toda, "Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys," Materials Science and Engineering: C, vol. 25, no. 3, pp. 363369, 2005.
[8] E. Farghadany, A. ZareiHanzaki, H. Abedi, D. Dietrich, M. Yadegari, and T. Lampke, "The coupled temperature–strain rate sensitivity of Ti–29Nb–13Ta–4.6 Zr alloy," Materials Science and Engineering: A, vol. 610, pp. 258262, 2014.
[9] E. Ghanbari, A. ZareiHanzaki, E. Farghadany, H. R. Abedi, and S. Khoddam, "HighTemperature Deformation Characteristics of a βType Ti29Nb13Ta4.6Zr Alloy," Journal of Materials Engineering and Performance, vol. 25, no. 4, pp. 15541561, 2016.
[10] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, "Design and mechanical properties of new β type titanium alloys for implant materials," Materials Science and Engineering: A, vol. 243, no. 12, pp. 244249, 1998.
[11] M. P. C Leyens, Titanium and titanium alloys: fundamentals and applications. 2003.
[12] J. R. Jorge, V. A. Barao, J. A. Delben, L. P. Faverani, T. P. Queiroz, and W. G. Assuncao, "Titanium in dentistry: historical development, state of the art and future perspectives," J Indian Prosthodont Soc, vol. 13, no. 2, pp. 717, Jun 2013.
[13] C. Ouchi, H. Iizumi, and S. Mitao, "Effects of ultrahigh purification and addition of interstitial elements on properties of pure titanium and titanium alloy," Materials Science and Engineering: A, vol. 243, no. 12, pp. 186195, 1998.
[14] E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, "Biocompatibility of βstabilizing elements of titanium alloys," Biomaterials, vol. 25, no. 26, pp. 57055713, 2004.
[15] M. J. Donachie, Titanium: a technical guide. ASM international, 2000.
[16] A. Choubey, R. Balasubramaniam, and B. Basu, "Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4V in simulated physiological environment," Journal of Alloys and Compounds, vol. 381, no. 12, pp. 288294, 2004.
[17] K. Bordji et al., "Cytocompatibility of Ti6Al4V and Ti5Al2.5 Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts," Biomaterials, vol. 17, no. 9, pp. 929940, 1996.
[18] M. Niinomi and M. Nakai, "Titaniumbased biomaterials for preventing stress shielding between implant devices and bone," International journal of biomaterials, vol. 2011, 2011.
[19] M. Geetha, A. Singh, A. Gogia, and R. Asokamani, "Effect of thermomechanical processing on evolution of various phases in Ti–Nb–Zr alloys," Journal of Alloys and Compounds, vol. 384, no. 12, pp. 131144, 2004.
[20] M. Geetha, A. Singh, K. Muraleedharan, A. Gogia, and R. Asokamani, "Effect of thermomechanical processing on microstructure of a Ti–13Nb–13Zr alloy," Journal of Alloys and Compounds, vol. 329, no. 12, pp. 264271, 2001.
[21] P. K. JA Davidson, "Biocompatible low modulus titanium alloy for medical implants," US 1992.
[22] U. S. Lindholm, "High strain rate tests," Measurement of mechanical properties, vol. 5, no. Part 1, pp. 199271, 1971.
[23] U. Lindholm and L. Yeakley, "High strainrate testing: tension and compression," Experimental Mechanics, vol. 8, no. 1, pp. 19, 1968.
[24] J. Achenbach, Wave propagation in elastic solids. Elsevier, 2012.
[25] B. Dodd, Adiabatic shear localization: occurrence, theories, and applications. Pergamon Press, 1992.
[26] W.S. Lee and C.F. Lin, "Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures," Materials Science and Engineering: A, vol. 241, no. 1, pp. 4859, 1998.
[27] J. Fagbulu and O. Ajaja, "Dislocation distributions and creep mechanisms," Journal of materials science letters, vol. 6, no. 8, pp. 894896, 1987.
[28] D. Klahn, A. Mukherjee, and J. Dorn, "STRAINRATE EFFECTS," California Univ., Berkeley. Lawrence Radiation Lab.1970.
[29] J. Campbell and W. Ferguson, "The temperature and strainrate dependence of the shear strength of mild steel," Philosophical Magazine, vol. 21, no. 169, pp. 6382, 1970.
[30] R. Broudy, "Dislocations and Mechanical Properties of Crystals," Journal of the American Chemical Society, vol. 80, no. 18, pp. 50095010, 1958.
[31] G. E. Dieter and D. Bacon, Mechanical metallurgy. McGrawHill New York, 1986.
[32] H. Conrad, "Thermally activated deformation of metals," JOM, vol. 16, no. 7, pp. 582588, 1964.
[33] W. Ferguson, A. Kumar, and J. Dorn, "Dislocation damping in aluminum at high strain rates," Journal of Applied Physics, vol. 38, no. 4, pp. 18631869, 1967.
[34] J. Campbell and A. Dowling, "The behaviour of materials subjected to dynamic incremental shear loading," Journal of the Mechanics and Physics of Solids, vol. 18, no. 1, pp. 4363, 1970.
[35] J. Campbell, "Dynamic plasticity: macroscopic and microscopic aspects," Materials Science and Engineering, vol. 12, no. 1, pp. 321, 1973.
[36] H. C. Rogers, "Adiabatic plastic deformation," Annual Review of Materials Science, vol. 9, no. 1, pp. 283311, 1979.
[37] M. E. Backman and S. A. Finnegan, "The propagation of adiabatic shear," in Metallurgical Effects at High Strain Rates: Springer, 1973, pp. 531543.
[38] P. Ludwik, "Elemente der Technologischen Mechanik Julius Springer," Berlin, Germany, 1909.
[39] Z. Gronostajski, "The constitutive equations for FEM analysis," Journal of Materials Processing Technology, vol. 106, no. 1, pp. 4044, 2000.
[40] Y. Bai and B. Dodd, "Adiabatic Shear Localization: Occurrence, Theories and Applications, 1992," ed: Pergamon Press, Oxford.
[41] D. Umbrello, R. M’saoubi, and J. Outeiro, "The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel," International Journal of Machine Tools and Manufacture, vol. 47, no. 3, pp. 462470, 2007.
[42] L. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger, and K. Staudhammer, "A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study," Journal of materials processing technology, vol. 182, no. 1, pp. 319326, 2007.
[43] G. R. Johnson and W. H. Cook, "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures," in Proceedings of the 7th International Symposium on Ballistics, 1983, vol. 21, no. 1983, pp. 541547: The Hague, The Netherlands.
[44] U. Andrade, M. Meyers, and A. Chokshi, "Constitutive description of workand shockhardened copper," Scripta metallurgica et materialia, vol. 30, no. 7, pp. 933938, 1994.
[45] F. J. Zerilli and R. W. Armstrong, "The effect of dislocation drag on the stressstrain behavior of FCC metals," Acta Metallurgica et Materialia, vol. 40, no. 8, pp. 18031808, 1992.
[46] R. Liang and A. S. Khan, "A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures," International Journal of Plasticity, vol. 15, no. 9, pp. 963980, 1999.
[47] Y. Hao et al., "Young’s modulus and mechanical properties of Ti29Nb13Ta4.6 Zr in relation to α ″martensite," Metallurgical and Materials Transactions A, vol. 33, no. 10, pp. 31373144, 2002.
[48] M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, and M. Ogawa, "Effect of oxygen content on microstructure and mechanical properties of biomedical Ti29Nb13Ta4.6 Zr alloy under solutionized and aged conditions," Materials transactions, vol. 50, no. 12, pp. 27162720, 2009.
[49] S. Esmaeili, L. Cheng, A. Deschamps, D. Lloyd, and W. Poole, "The deformation behaviour of AA6111 as a function of temperature and precipitation state," Materials Science and Engineering: A, vol. 319, pp. 461465, 2001.
[50] B. Viguier, "Dislocation densities and strain hardening rate in some intermetallic compounds," Materials Science and Engineering: A, vol. 349, no. 12, pp. 132135, 2003.
[51] D. Chu and J. Morris, "The influence of microstructure on work hardening in aluminum," Acta materialia, vol. 44, no. 7, pp. 25992610, 1996.
[52] W. Guo, H. Xing, J. Sun, X. Li, J. Wu, and R. Chen, "Evolution of microstructure and texture during recrystallization of the coldswaged TiNbTaZrO alloy," Metallurgical and Materials Transactions A, vol. 39, no. 3, pp. 672678, 2008.
[53] W.S. Lee and C.Y. Liu, "Comparison of dynamic compressive flow behavior of mild and medium steels over wide temperature range," Metallurgical and materials Transactions A, vol. 36, no. 11, pp. 31753186, 2005.
[54] C. Zener and J. Hollomon, "Effect of strain rate upon plastic flow of steel," Journal of Applied physics, vol. 15, no. 1, pp. 2232, 1944.
[55] A. Josephine Prabha et al., "Thermodynamics of α″→β phase transformation and heat capacity measurements in Ti–15at% Nb alloy," Physica B: Condensed Matter, vol. 406, no. 22, pp. 42004209, 2011.
[56] Y. Hao, S. Li, S. Sun, and R. Yang, "Effect of Zr and Sn on Young's modulus and superelasticity of Ti–Nbbased alloys," Materials Science and Engineering: A, vol. 441, no. 12, pp. 112118, 2006.
[57] P. Majumdar, S. B. Singh, and M. Chakraborty, "Elastic modulus of biomedical titanium alloys by nanoindentation and ultrasonic techniques—A comparative study," Materials Science and Engineering: A, vol. 489, no. 12, pp. 419425, 2008.
[58] A. Shahan and A. K. Taheri, "Adiabatic shear bands in titanium and titanium alloys: a critical review," Materials & Design, vol. 14, no. 4, pp. 243250, 1993.
[59] R. Ham, "The determination of dislocation densities in thin films," Philosophical Magazine, vol. 6, no. 69, pp. 11831184, 1961.
[60] Y. Tomota, P. Lukas, S. Harjo, J. H. Park, N. Tsuchida, and D. Neov, "In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation," Acta Materialia, vol. 51, no. 3, pp. 819830, 2003.
[61] M. Tane et al., "Peculiar elastic behavior of Ti–Nb–Ta–Zr single crystals," Acta Materialia, vol. 56, no. 12, pp. 28562863, 2008.
[62] M. Kassner and K. Kyle, "Taylor hardening in five power law creep of metals and class M alloys," in Nano and Microstructural Design of Advanced Materials: Elsevier, 2003, pp. 255271.
[63] M. Kassner, "A case for Taylor hardening during primary and steadystate creep in aluminium and type 304 stainless steel," Journal of Materials Science, vol. 25, no. 4, pp. 19972003, 1990.
[64] J. Gubicza, N. Chinh, J. Lábár, S. Dobatkin, Z. Hegedűs, and T. Langdon, "Correlation between microstructure and mechanical properties of severely deformed metals," Journal of Alloys and Compounds, vol. 483, no. 12, pp. 271274, 2009.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20180716起公開。 


