進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1307201617394700
論文名稱(中文) 考量混合生產及回收料不確定性的整備時間之供應鏈中斷紓解政策
論文名稱(英文) Mitigation policy of supply chain disruption under hybrid manufacturing/remanufacturing production with setup time uncertainty of recycled materials
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 104
學期 2
出版年 105
研究生(中文) 張弘霖
研究生(英文) Hung-Lin Chang
學號 r36031131
學位類別 碩士
語文別 中文
論文頁數 103頁
口試委員 指導教授-謝中奇
口試委員-黃宇翔
口試委員-張秀雲
中文關鍵字 供應中斷  供應鏈中斷紓解政策  混合製造及再製造生產系統  整備時間不確定性 
英文關鍵字 Supply chain disruption  Mitigation policy  Setup time uncertainty  Hybrid manufacturing/remanufacturing production system 
學科別分類
中文摘要 供應鏈的穩定對社會中的各個產業而言是相當重要的,為了有一個穩固的供應鏈系統,供應鏈中的成員經常採取多供應商採購,或是供應鏈成員間以契約的方式來達成一定程度的協議,以確保成員間的穩固合作。然而若供應鏈中具有相當大的不確定性,諸如天災人禍或是作業疏失等難以控制之情形,足以構成供應鏈系統暴露於風險當中,那麼此時供應鏈運作上的風險控管便顯得相當重要了。另外,考量到近年來可利用資源快速減少,廠商為了因應各國政府的法令及消費市場環保意識的抬頭,廠商透過回收廢舊產品或向消費者回收已使用過產品來供給再製造生產之用,使得資源得以重複利用,並有效降低生產成本及廢棄物對環境的傷害。
本研究以一個兩階段之混合製造及再製造生產系統為背景,包含兩個供應商及一個製造商。其中,兩供應商分別為穩定及不穩定供應商,穩定之供應商供應成本較昂貴的原物料,於本研究中視為備用供應商;不穩定之供應商供應成本較便宜的回收料,於本研究中視為主要供應商。而製造商能以回收料進行再製造生產或以原物料進行一般生產,且兩生產模式生產之產品皆無品質上的差異,然而以回收料進行再製造生產時的整備時間具不確定性。故本研究考量主要供應商可能發生隨機供應中斷及以回收料進行再製造生產的整備時間不確定性,分為兩個模型進行分析及比較,模型1為製造商傾向等待主要供應商供應中斷後恢復供應及等待回收料整備完成的模型;模型2為製造商不傾向等待主要供應商供應中斷後恢復供應及等待回收料整備完成的模型。透過製造商向主要供應商訂購之回收料量、產品安全存貨量及製造商願意同時等待主要供應商供應中斷後恢復供應及等待回收料整備完成之等待時間的決策,探討在何種模型下製造商總成本能最小化。由數值分析結果發現,製造商採用模型1之總成本會小於模型2,而兩模型最大差別在於,模型1的製造商願意等待時間顯著大於模型2,。
英文摘要 In order to keep the supply chain stable, supply chain members always use some means such as multiple sourcing or holding safety inventory to make their supply chain operate smoothly. But if something unpredictable such as a natural disaster happens, it will have some negative impacts on the supply chain system. Thus, risk management is important. Furthermore, because of the increasing importance of environmental friendly manufacturing and the government environmental protection laws, many companies began to use recycled materials to produce products in recent years.

This thesis considers a two-stage hybrid manufacturing/remanufacturing production system including two suppliers and one manufacturer. One supplier is the primary supplier, offering cheaper recycled materials with uncertainty setup time, but is subject to random disruption. The other supplier is the backup supplier, offering more expensive raw materials, but is perfectly reliable. The manufacturer can use recycled materials to remanufacture and use raw materials to manufacture the same products. By considering that the primary supplier may randomly incur supply chain disruption and the uncertainty of recycled materials, this study investigates two models. In model 1, the manufacturer tends to wait for the primary supplier to recover from supply chain disruption and then complete the setup of recycled materials. In model 2, the manufacturer is less willing wait for the primary supplier to recover from supply chain disruption and complete the setup of recycled materials. In order to minimize the expected total cost, the manufacturer must decide which model to use.

The numerical analysis show that model 1 is better than model 2.
論文目次 摘要.........................................................I
Extended Abstrct.............................................II
誌謝.........................................................V
目錄.........................................................VI
圖目錄.......................................................X
表目錄......................................................XII
第一章、緒論................................................1
1.1 研究背景與動機..........................................1
1.2 研究目的................................................3
1.3 研究流程................................................3
1.4 論文架構................................................4
第二章、文獻探討............................................5
2.1 再製造活動..............................................5
2.2 混合製造及再製造生產系統 ...............................8
2.3 供應鏈風險及中斷管理....................................11
2.4 供應鏈中斷的紓解政策....................................13
2.5 小結....................................................17
第三章、模式建構與發展......................................19
3.1 模式環境................................................19
3.2 模式假設................................................21
3.3 參數定義................................................22
3.4 模式建構及分析..........................................25
3.4.1模型1..................................................26
3.4.1.1 情境1-1.............................................28
3.4.1.2 情境1-2.............................................31
3.4.1.3 情境1-3.............................................34
3.4.1.4 情境1-4.............................................37
3.4.1.5 情境1-5.............................................40
3.4.1.6 情境1-6.............................................42
3.4.1.7 情境1-7.............................................45
3.4.1.8 情境1-8.............................................48
3.4.1.9 情境1-9.............................................51
3.4.1.10 期望生產週期及期望總成本...........................53
3.4.2 模型2..................................................62
3.4.2.1 情境2-1.............................................64
3.4.2.2 情境2-2.............................................64
3.4.2.3 情境2-3.............................................65
3.4.2.4 情境2-4.............................................65
3.4.2.5 情境2-5.............................................66
3.4.2.6 情境2-6.............................................66
3.4.2.7 情境2-7.............................................67
3.4.2.8 期望生產週期及期望總成本............................67
3.4.3 模式求解..............................................73
3.5 小結....................................................74
第四章、數值分析............................................75
4.1 參數設定................................................75
4.2 模型求解................................................76
4.3 敏感度分析..............................................77
4.3.1 產品單位時間單位存貨成本ch之敏度分析..................78
4.3.1.1 ch對兩模型單位時間總成本 TC 的影響..................78
4.3.1.2 ch對回收料訂購量q1、產品安全存貨量hq及製造商願意等待時 間ws的影響..................................................78
4.3.2 單位缺貨成本cp之敏感度分析............................80
4.3.2.1 cp對兩模型單位時間總成本 TC 的影響..................80
4.3.2.2 cp對回收料訂購量q1、產品安全存貨量hq及製造
商願意等待時間ws的影響..............................81
4.3.3 單位時間整備成本cs之敏感度分析........................83
4.3.3.1 cs對兩模型單位時間總成本 TC 的影響..................83
4.3.3.2 cs對回收料訂購量q1、產品安全存貨量hq及製造
商願意等待時間ws的影響..............................84
4.3.4 回收料整備時間服從指數分配的參數α之敏感度分析........86
4.3.4.1 α對兩模型單位時間總成本TC的影響....................86
4.3.4.2 α對回收料訂購量q1、產品安全存貨量hq及製造
商願意等待時間ws的影響..............................87
4.3.5 等待主要供應商恢復供應之等待時間服從指數分配的參數μ
之敏感度分析..........................................89
4.3.5.1 μ對兩模型單位時間總成本TC的影響....................89
4.3.5.2 μ對回收料訂購量q1、產品安全存貨量hq及製造
商願意等待時間ws的影響..............................90
4.3.6 等待主要供應商恢復供應之等待時間服從指數分配的參數μ
及回收料整備時間服從指數分配的參數α之敏感度分析......92
4.3.6.1 μ及α對兩模型單位時間總成本TC的影響................92
4.3.6.2 μ對α回收料訂購量q1、產品安全存貨量hq及製造
商願意等待時間ws的影響..............................93
4.4 小結....................................................95
第五章、結論與未來研究方向..................................98
5.1 結論....................................................98
5.2 未來研究方向............................................99
參考文獻....................................................100
參考文獻 Ahiska, S. S., & King, R. E. (2010). Inventory optimization in a one product recoverable manufacturing system. International Journal of Production Economics, 124(1), 11-19.
Aras, N., Boyaci, T., & Verter, V. (2004). The effect of categorizing returned products in remanufacturing. IIE Transactions, 36(4), 319-331.
Aras, N., Verter, V., & Boyaci, T. (2006). Coordination and priority decisions in hybrid manufacturing/remanufacturing Systems. Production and Operations Management, 15(4), 528-543.
Bulmus, S. C., Zhu, S. X., & Teunter, R. H. (2014). Optimal core acquisition and pricing strategies for hybrid manufacturing and remanufacturing systems. International Journal of Production Research, 52(22), 6627-6641.
Cai, X., Lai, M., Li, X., Li, Y., & Wu, X. (2014). Optimal acquisition and production policy in a hybrid manufacturing/remanufacturing system with core acquisition at different quality levels. European Journal of Operational Research, 233(2), 374-382.
Ferguson, M. E., & Toktay, L. B. (2006). The effect of competition on recovery strategies. Production and Operations Management, 15(3), 351.
Galbreth, M. R., & Blackburn, J. D. (2010). Optimal acquisition quantities in remanufacturing with condition uncertainty. Production and Operations Management, 19(1), 61-69.
Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: a comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603-626.
Guide, V. D. R. (2000). Production planning and control for remanufacturing: industry practice and research needs. Journal of Operations Management, 18(4), 467-483.
Guide, V. D. R., Jayaraman, V., & Linton, J. D. (2003). Building contingency planning for closed-loop supply chains with product recovery. Journal of Operations Management, 21(3), 259-279.
Guide, V. D. R., & Wassenhove, L. N. (2001). Managing product returns for remanufacturing. Production and Operations Management, 10(2), 142-155.
Gupta, V., He, B., & Sethi, S. P. (2015). Contingent sourcing under supply disruption and competition. International Journal of Production Research, 53(10), 3006-3027.
Hishamuddin, H., Sarker, R. A., & Essam, D. (2012). A disruption recovery model for a single stage production-inventory system. European Journal of Operational Research, 222(3), 464-473.
Huang, Y.-S., Chen, M.-W., & Fang, C.-C. (2013). A study of the optimal production strategy for hybrid production systems. International Journal of Production Research, 51(19), 5853-5865.
Junior, M. L., & Filho, M. G. (2012). Production planning and control for remanufacturing: literature review and analysis. Production Planning & Control, 23(6), 419-435.
Kenne, J.-P., Dejax, P., & Gharbi, A. (2012). Production planning of a hybrid manufacturing-remanufacturing system under uncertainty within a closed-loop supply chain. International Journal of Production Economics, 135(1), 81-93.
Kim, E., Saghafian, S., & Van Oyen, M. P. (2013). Joint control of production, remanufacturing,and disposal activities in a hybrid manufacturing-remanufacturing system. European Journal of Operational Research, 231(2), 337-348.
Kim, S.-H., & Tomlin, B. (2013). Guilt by association: strategic failure prevention and recovery capacity investments. Management Science, 59(7), 1631-1649.
Kleindorfer, P. R., & Saad, G. H. (2005). Managing disruption risks in supply chains. Production and Operations Management, 14(1), 53-68.
Latour, A. (2001). Trial byfire: a blaze in Albuquerque sets off major crisis for cell-phone giants. Wall Street Journal, 1(29), 2001.
Li, C., Liu, F., Cao, H., & Wang, Q. (2009). A stochastic dynamic programming based model for uncertain production planning of re-manufacturing system. International Journal of Production Research, 47(13), 3657-3668.
MacKenzie, C. A., Barker, K., & Santos, J. R. (2014). Modeling a severe supply chain disruption and post-disaster decision making with application to the Japanese earthquake and tsunami. IIE Transactions, 46(12), 1243-1260.
McConocha, D. M., & Speh, T. W. (1991). Remarketing: commercialization of remanufacturing technology. Journal of Business & Industrial Marketing, 6(1/2), 23-37.
Morgan, S. D., & Gagnon, R. J. (2013). A systematic literature review of remanufacturing scheduling. International Journal of Production Research, 51(16), 4853-4879.
Oke, A., & Gopalakrishnan, M. (2009). Managing disruptions in supply chains: a case study of a retail supply chain. International Journal of Production Economics, 118(1), 168-174.
Pagell, M., Wu, Z., & Murthy, N. N. (2007). The supply chain implications of recycling. Business Horizons, 50(2), 133-143.
Parlar, M., & Berkin, D. (1991). Future supply uncertainty in EOQ models. Naval Research Logistics 38(1), 107-121.
Parlar, M., & Perry, D. (1996). Inventory models of future supply uncertainty with single and multiple suppliers. Naval Research Logistics 43(2), 191-210.
Paul, S. K., Sarker, R., & Essam, D. (2014). Real time disruption management for a two-stage batch production-inventory system with reliability considerations. European Journal of Operational Research, 237(1), 113-128.
Qi, L. (2013). A continuous-review inventory model with random disruptions at the primary supplier. European Journal of Operational Research, 225(1), 59-74.
Qi, L., Shen, Z. J. M., & Snyder, L. V. (2009). A continuous‐review inventory model with disruptions at both supplier and retailer. Production and Operations Management, 18(5), 516-532.
Qiang, Q., Ke, K., Anderson, T., & Dung, J. (2013). The closed-loop supply chain network with competition, distribution channel investment, and uncertainties. Omega, 41(2), 186-194.
Rogers, D. S., Tibben-Lembke, R. S., & Council, R. L. E. (1999). Going Backwards: Reverse Logistics Trends and Practices (Vol. 2): Reverse logistics executive council pittsburgh, PA.
Sargut, F. Z., & Qi, L. (2012). Analysis of a two-party supply chain with random disruptions. Operations Research Letters, 40(2), 114-122.
Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239-252.
Sawik, T. (2014). Joint supplier selection and scheduling of customer orders under disruption risks: single Vs. dual sourcing. Omega, 43, 83-95.
Schmitt, A. J., & Snyder, L. V. (2012). Infinite-horizon models for inventory control under yield uncertainty and disruptions. Computers & Operations Research, 39(4), 850-862.
Shi, J., Zhang, G., & Sha, J. (2011). Optimal production planning for a multi-product closed loop system with uncertain demand and return. Computers & Operations Research, 38(3), 641-650.
Shi, W., & Min, K. J. (2015). Remanufacturing decisions and implications under material cost uncertainty. International Journal of Production Research, 53(21), 6421-6435.
Silbermayr, L., & Minner, S. (2014). A multiple sourcing inventory model under disruption risk. International Journal of Production Economics, 149, 37-46.
Souza, G. C., & Ketzenberg, M. (2002). Two-stage make-to-order remanufacturing with service-level constraints. International Journal of Production Research, 40(2), 477-493.
Steeneck, D. W., & Sarin, S. C. (2013). Pricing and production planning for reverse supply chain: a review. International Journal of Production Research, 51(23-24), 6972-6989.
Su, P., & Liu, S. (2015). Dual sourcing in managing operational and disruption risks in contract manufacturing. International Journal of Production Research, 53(1), 291-306.
Tang, C., & Tomlin, B. (2008). The power of flexibility for mitigating supply chain risks. International Journal of Production Economics, 116(1), 12-27.
Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. International Journal of Logistics: Research and Applications, 9(1), 33-45.
Teunter, R. H., & Flapper, S. D. P. (2011). Optimal core acquisition and remanufacturing policies under uncertain core quality fractions. European Journal of Operational Research, 210(2), 241-248.
Thierry, M., Salomon, M., Van Nunen, J., & Van Wassenhove, L. (1995). Strategic issues in product recovery management. California Management Review, 37(2), 114-135.
Toffel, M. W. (2004). Strategic management of product recovery. California Management Review, 46(2), 120-141.
Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply chain disruption risks. Management Science, 52(5), 639-657.
Van der Laan, E., & Salomon, M. (1997). Production planning and inventory control with remanufacturing and disposal. European Journal of Operational Research, 102(2), 264-278.
Wang, Y., Gilland, W., & Tomlin, B. (2010). Mitigating supply risk: dual sourcing or process improvement? Manufacturing & Service Operations Management, 12(3), 489-510.
Wei, J., & Zhao, J. (2015). Pricing and remanufacturing decisions in two competing supply chains. International Journal of Production Research, 53(1), 258-278.
Yang, C.-H., Wang, J., & Ji, P. (2015). Optimal acquisition policy in remanufacturing under general core quality distributions. International Journal of Production Research, 53(5), 1425-1438.
Yu, H., Zeng, A. Z., & Zhao, L. (2009). Single or dual sourcing: decision-making in the presence of supply chain disruption risks. Omega, 37(4), 788-800.
Zsidisin, G. A. (2003). Managerial perceptions of supply risk. Journal of Supply Chain Management, 39(4), 14-26.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-06-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw