進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1307201616302200
論文名稱(中文) 以電化學沉積法製備銅銦硒吸收層之薄膜型太陽能電池之研究
論文名稱(英文) Study of electrodeposited CuInSe2 absorption layer on CdS/CuInSe2 thin film solar cell
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 104
學期 2
出版年 105
研究生(中文) 冷貞廷
研究生(英文) Chen-Ting Leng
學號 Q16031102
學位類別 碩士
語文別 中文
論文頁數 111頁
口試委員 指導教授-洪茂峰
口試委員-王永和
口試委員-洪振益
口試委員-蔡有仁
口試委員-楊證富
中文關鍵字 硒化  銅銦硒太陽能電池  電鍍  轉換效率 
英文關鍵字 CuInSe2  CdS  electrodeposition  selenization 
學科別分類
中文摘要 本論文使用非真空製程製備太陽能電池之吸收層與緩衝層的先驅物薄膜,藉由回火製程參數調變,使薄膜再結晶,提升薄膜之結晶顆粒大小並減少晶格邊界與內部缺陷的問題,改善後轉換效率達到3.77%。
本實驗製備之硫化鎘薄膜,原子經回火製程提供之熱能,修復晶粒間之孔隙,提高結晶品質與電性,回火溫度提高到350℃,薄膜變得緻密,電阻率也從4698Ωcm降至8.44Ωcm。實驗中採共電鍍製備CIS先驅膜,並以兩階段硒化處理提升薄膜品質,以500℃進行硒化,可得較大的晶粒與一致的薄膜,其元件效率達0.77%,將硒化氣壓調至30torr使薄膜組成更接近化學劑量比,抑制內部二次相的生成同時提升Voc與Isc使效率推升到1.3%,為了抑制因快速冷卻所導致之孔隙,調整降溫速率到2℃/s,載子移動路徑減短,降低串聯電阻,Voc從0.196V提升到0.287V,效率達到2.29%,後以碘溶液對薄膜表面進行鈍化後,效率升至3.77%。
英文摘要 CuInSe2 films were fabricated on Mo-coated glass by electro-deposition and selenization processes. The CuInSe2 precursors were selenized at different temperature to enhance the quality and crystallinity. In order to improve the performance of CuInSe2 thin film solar cell, the chemical composition of CuInSe2 absorption layer under different selenization pressure were studied. The relationship between temperature dropping rate and open circuit voltage (Voc) of solar cells was investigated. The value of the Voc was also improved by KCN and I solution surface treatment, sequentially. The solar cell with the AZO/CdS/CIS/Mo/Glass structure was fabricated and the conversion efficiency of 2.82% was obtained.
論文目次 摘要 i
Abstract ii
致謝 viii
目錄 ix
表目錄 xiv
圖目錄 xv
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池簡介 3
1-3銅銦硒太陽能電池元件結構 9
1-3-1 鉬金屬(Mo)背電極 9
1-3-2 CuInSe2主吸收層 10
1-3-3 CdS 緩衝層 12
1-3-4 AZO 透明導電薄膜 12
1-3-5 Al 前電極 13
1-4 研究動機 14
第二章 理論基礎 16
2-1 太陽能光譜介紹 16
2-2 應用太陽能電池基本原理 19
2-2-1 基本半導體物理 19
2-2-2 太陽能電池材料 23
2-2-3 光生伏特效應 24
2-3 吸收層常見製備方法簡介 25
2-3-1 蒸鍍(Evaporation) 25
2-3-2 濺鍍(Sputtering) 27
2-3-3 噴霧熱解法 (Spray pyrolysis) 27
2-3-4 分子束磊晶 (Molecular Beam Epitaxy,MBE) 27
2-3-5 網版印刷 (Screen printing) 28
2-3-6 電化學沉積法 (Electro-deposition) 28
2-3-7 硒化 (Selenization) 29
2-4 CdS 緩衝層製備方式介紹 29
2-4-1 化學氣相沉積法 30
2-4-2 化學水浴法 30
2-5 電化學簡介 31
2-5-1 電化學原理 31
2-5-2 電鍍裝置 33
2-5-3 脈衝電壓電鍍法 35
2-5-4 循環伏安法 (Cyclic Voltammetry) 37
第三章 實驗方法與量測儀器介紹 40
3-1 實驗流程 40
3-1-1 清洗鍍鉬玻璃基板 41
3-1-2 電鍍 p-type CuInSe2 主吸收層 42
3-1-3 CuInSe2薄膜熱處理 43
3-1-4 薄膜表面處理 44
3-1-5 化學水浴法製備 CdS 緩衝層 45
3-2 實驗藥品與材料 46
3-3 實驗參數設定 48
3-3-1 電鍍 CuInSe2 之參數設定 48
3-3-2 硒化製程參數設定 49
3-3-3 化學水浴法製備 CdS 參數設定 50
3-3-4 濺鍍 AZO 參數設定 51
3-4 量測分析儀器 52
3-4-1 場發射掃描式電子顯微鏡(FE-SEM) 52
3-4-2 能量散佈光譜儀(EDS) 53
3-4-3 X光繞射儀(X-Ray Diffraction, XRD) 55
3-4-4 四點探針(Four Point Probe) 57
第四章 結果與討論 59
4-1 CuInSe2吸收層製備 59
4-1-1 第二階段硒化溫度調變 61
4-1-2 硒化製程氣壓調變 69
4-1-3 硒化製程降溫速率調變 76
4-2 CdS緩衝層製備 80
4-2-1 CdS熱處理溫度調變 82
4-3 CuInSe2 太陽能電池元件製作 86
4-3-1 第二階段硒化溫度調變 CuInSe2 元件製作 88
4-3-2 硒化製程氣壓調變CuInSe2吸收層元件製作 92
4-3-3 降溫速率調變CuInSe2吸收層元件製作 96
4-3-4 CuInSe2吸收層表面鈍化元件製作 99
第五章結論 102
第六章 未來展望 104
參考文獻 106
參考文獻 [1] 楊德仁,”太陽能電池材料”,台中市: 五南圖書出版股份有限公司,2008。
[2] 鄭名山,“太陽能發電簡介”,物理雙月刊(廿九卷三期), 2007。
[3] Wada, T., Kohara, N., Nishiwaki, S., & Negami, T. "Characterization of the Cu (In, Ga) Se2/Mo interface in CIGS solar cells." Thin Solid Films 387.1: 118-122, 2001.
[4] Ruckh, M., Schmid, D., Kaiser, M., Schäffler, R., Walter, T., & Schock, H. W. "Influence of substrates on the electrical properties of Cu(In, Ga)Se2 thin films." Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on. Vol. 1. IEEE, 1994.
[5] Braunger, D., Hariskos, D., Bilger, G., Rau, U., & Schock, H. W. "Influence of sodium on the growth of polycrystalline Cu(In, Ga)Se2 thin films." Thin Solid Films 361: 161-166, 2000.
[6] B. M. Bagol, V. K. Kapur, A. Minnick and C. Leidohlm, “Photovoltaic Specialists Conference.” Conference Recond of the Twenty Third IEEE, 1993.
[7] Yoshihiro Hamak,“Thin-film Solar Cells: Next Generation Photovoltaics and Its Applications. Berlin” New York:Springer, p.164~169, 2004.
[8] Hiie, J., Dedova, T., Valdna, V., & Muska, K. "Comparative study of nano-structured CdS thin films prepared by CBD and spray pyrolysis: annealing effect." Thin Solid Films 511: 443-447, 2006.
[9] 詹岳霖,”硒化銅銦鎵薄膜太陽能電池中緩衝層的製備與特性分析”,國立東華大學光電工程研究所碩士論文,2010。
[10] Ouerfelli, J., Regragui, M., Morsli, M., Djeteli, G., Jondo, K., Amory, C & Bernede, J. C. "Properties of ZnO thin films deposited by chemical bath deposition and post annealed." Journal of Physics D: Applied Physics 39.9: 1954, 2006.
[11] 蔡進譯,“高效率太陽電池-從愛因斯坦的光電效應談起”,物理,雙月刊,二七卷,五期, 2005年10月。
[12] Kazmerski, L. L., F. R. White, and G. K. Morgan. "Thin‐film CuInSe2/CdS heterojunction solar cells." Applied Physics Letters 29.4 268-270, 1976.
[13] 李偉,“濺鍍預製層固態源硒化法製備 CIGS(銅銦鎵硒)薄膜太陽能電池”,天津南開大學博士論文,2006。
[14] 洪忠欽,”以基因演算法萃取太陽能電池特性參數並應用於非晶矽薄膜太陽能電池”,國立成功大學微電子工程研究所碩士論文,2012。
[15] Gretta Mae Ferguson, “An Outdoor Assessment of Organic Solar Cell Performance, “Senior Thesis SUBMITTED AS PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Arts in Physics, Pomona College, June 2013.
[16] R. A. Mickelsen and M. S. Chen , Appl. Phys. Lett. ,vol. 26 , pp.5 , 1980.
[17] Grindle, S. P., Clark, A. H., Rezaie‐Serej, S., Falconer, E., McNeily, J., & Kazmerski, L. L. "Growth of CuInSe2 by molecular beam epitaxy." Journal of Applied Physics 51.10: 5464-5469, 1980.
[18] Romeo, N., Canevari, V., Sberveglieri, G., Bosio, A., & Zanotti, L. "Growth of large-grain CuInSe2 thin films by flash-evaporation and sputtering." Solar Cells 16: 155-164, 1986.
[19] Pamplin, Brian, and R. S. Feigelson. "Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds." Thin Solid Films 60.2: 141-146, 1979.
[20] Wada, T., Matsuo, Y., Nomura, S., Nakamura, Y., Miyamura, A., Chiba, Y., Konagai, M. "Fabrication of Cu (In, Ga) Se2 thin films by a combination of mechanochemical and screen‐printing/sintering processes."physica status solidi (a) 203.11: 2593-2597, 2006.
[21] Faraj, M. G., K. Ibrahim, and A. Salhin. "Effects of Ga concentration on structural and electrical properties of screen printed-CIGS absorber layers on polyethylene terephthalate." Materials Science in Semiconductor Processing15.2: 206-213, 2012.
[22] Pottier, D., and G. Maurin. "Preparation of polycrystalline thin films of CuInSe2 by electrodeposition." Journal of applied electrochemistry 19.3: 361-367, 1989.

[23] Pandey, R. Kumar, Suresh Chandra, and S. N. Sahu. “Handbook of semiconductor electrodeposition.” M. Dekker, 1996.
[24] 胡啟章,”電化學原理與方法”,五南圖書出版公司,2007。
[25] Kang, S. H., Kim, Y. K., Choi, D. S., & Sung, Y. E. "Characterization of electrodeposited CuInSe2 (CIS) film." Electrochimica Acta 51.21: 4433-4438,2006.
[26] Zhang, Z., Li, J., Wang, M., Wei, M., Jiang, G., & Zhu, C. "Influence of annealing conditions on the structure and compositions of electrodeposited CuInSe2 films." Solid State Communications150.47: 2346-2349, 2010.
[27] Kampmann, A., Sittinger, V., Rechid, J., & Reineke-Koch, R. "Large area electrodeposition of Cu (In, Ga) Se2." Thin Solid Films 361: 309-313, 2000
[28] Fathy, Naglaa, Ryohei Kobayashi, and Masaya Ichimura. "Preparation of ZnS thin films by the pulsed electrochemical deposition." Materials Science and Engineering: B 107.3: 271-276, 2004.
[29] 許樹恩、吳泰伯,”X 光繞射原理與材料結構分析”,中國材料學會,新竹,p.169, 1996。
[30] Sebastian, P. J., Calixto, M. E., Bhattacharya, R. N., Fernandez, A. M., & Noufi, R. N. "Cu (In, Ga) Se2 based photovoltaic structure by electrodeposition and processing." SPIE proceedings series. Society of Photo-Optical Instrumentation Engineers, 1998.
[31] Möller, Hans Joachim. Semiconductors for solar cells. Artech House Publishers, 1993.
[32] Caballero, R., and C. Guillen. "CuInSe2 formation by selenization of sequentially evaporated metallic layers." Solar Energy Materials and Solar Cells86.1: 1-10, 2005.
[33] Li, W., Sun, Y., Liu, W., & Zhou, L. "Fabrication of Cu (In, Ga) Se2 thin films solar cell by selenization process with Se vapor." Solar Energy 80.2: 191-195, 2006.
[34] Zaretskaya, E. P., et al. "Raman spectroscopy of CuInSe2 thin films prepared by selenization." Journal of Physics and Chemistry of Solids 64.9: 1989-1993, 2003.
[35] Kim, S. D., Kim, H. J., Yoon, K. H., & Song, J. "Effect of selenization pressure on CuInSe2 thin films selenized using co-sputtered Cu-In precursors." Solar Energy Materials and Solar Cells 62.4: 357-368, 2000.
[36] Kim, K. H., Ahn, S. J., Ahn, B. T., & Yoon, K. H. "Effects of Se atmosphere on the densification of absorber layer using Cu (In, Ga) Se2 nanoparticles for solar cells." Solid State Phenomena. Vol. 124. Trans Tech Publications, 2007.
[37] Batra, N., Kumar, S., Sharma, M., Srivastava, S. K., Sharma, P., & Singh, P. K. "A comparative study of silicon surface passivation using ethanolic iodine and bromine solutions." Solar Energy Materials and Solar Cells100: 43-47, 2012.
[38] Nam, J., Kang, Y., Kim, D., Baek, D., Lee, D., & Yang, J. "The oxidation effect of a Mo back contact on Cu (In, Ga)(Se, S)2 thin-film solar modules." Solar Energy Materials and Solar Cells 144: 445-450, 2016.
[39] Zhu, X., Zhou, Z., Wang, Y., Zhang, L., Li, A., & Huang, F. "Determining factor of MoSe2 formation in Cu (In, Ga) Se2 solar cells." Solar Energy Materials and Solar Cells 101: 57-61, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw