進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1307201600024600
論文名稱(中文) 線上消費者對詐欺事件認知風險之腦影像研究 - 以二手商品拍賣詐欺事件為例
論文名稱(英文) fMRI Research of Perceived Risk On Online Consumer Fraud Events-Second-Hand Products On Fraud Events
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 104
學期 2
出版年 105
研究生(中文) 許耀峯
研究生(英文) Yao-Feng Xu
學號 R76031074
學位類別 碩士
語文別 英文
論文頁數 111頁
口試委員 指導教授-謝佩璇
口試委員-黃貞穎
口試委員-楊政達
口試委員-呂執中
中文關鍵字 知覺品質  認知風險  SOR理論  fMRI  二手線上拍賣 
英文關鍵字 perceived quality  perceived risk  SOR theory  fMRI  second-hand online auction 
學科別分類
中文摘要 隨著網路越來越發達,以及手持裝置的盛行,消費者的購物行為已有了很大的改變,另外,隨著4G的時代來臨,行動購物在電子商務市場逐漸在市場占據重要的地位。消費者在線上購物的時候,很多時候因為資訊的不對稱以及網路的匿名性還有買賣雙方彼此信任,而受到詐欺。從二手商品的購買意圖來看,消費者主要購買動機有價格、實用、品牌、安全四項動機,其中價格是影響消費者最大的動機,上述的四項動機,可以將其對應到知覺品質(Perceived Quality)的商品屬性(外部線索)與商品價值(內在線索)。本研究以S-O-R(Stimulate-Organism-Response)理論為基礎,透過商品的知覺品質屬性以及價值,還有平台風險的刺激,本研究觀察消費者在不同的刺激之下,觀察消費者是否願意購買。在過去認知風險的文獻中,主要是針對買賣雙方交易的風險來看,並無特別針對線上拍賣平台探討消費者認知的交易風險,所以本研究值得針對不同拍賣平台的功能探討消費者可能面臨的認知風險,並且影響其購買意願的情形。本研究使用fMRI技術探討與詐欺相關的腦區活化情形,當消費者面對兩種詐欺可能發生情境下(認知具有低交易風險的平台、高知覺品質的商品;高交易風險的平台、高知覺品質的商品),觀察其購買商品意圖,包括確認與詐欺相關的腦區及風險決策時腦部神經元活動狀況。根據過去文獻,本研究假設腦島(Insula)跟前額葉皮層(DLPFC)以及前扣帶皮層(ACC)在認知到平台具有高交易風險,或者商品具有低知覺品質的情境,會有較高活化反應產生。此外,根據完形心理學的研究都和人的知覺有關,它提供了各種以知覺為主的解釋,完形的理論發展已近一百年,直至目前學者所研究的知覺原則已超過一百個,但本研究僅討論整體與局部,因為此原則與人的視覺感知之關係比較密切,並且跟本研究探討平台的認知風險與賣家風險的(局部刺激)以及商品知覺品質(局部刺激)兩者結合形成一個整體的詐欺情境,看在不同情境下實驗參與者是否感受為詐欺的情形。
本研究的結果發現,當參與者在詐欺情境時,背外側前額葉(DLPFC) 、中央後迴(Postcentral Gyrus) 、顳上回(Superior Temporal Gyrus)及前扣帶皮層(ACC)皆產生活化的反應,此外當消費者在高風險情境時,參與者的腦島(Insula)、頂葉上迴(Superior Frontal Gyrus)、額下迴(Inferior Frontal Gyrus),皆有顯著的反應。
英文摘要 With the rapid development of the Internet and the prevalence of hand-held devices, consumer shopping behavior has continued to evolve. In addition, with the 4G era, mobile shopping gradually has become the mainstream e-commerce market. Due to information asymmetry, internet anonymity and the need for mutual trust between sellers and buyers, many consumers will possibly be faced with fraud while shopping online.
From the second-hand product purchase intent context, consumers purchase motivation can be divided into four main components, including price, practicality, brand, and safety, with price being the most influential factor affecting consumer purchase motivation. The aforementioned motivation can be mapped into perceived quality, which can then be divided into product attributes (external cues) and product value (internal cues). This study is based on S-O-R (Stimulate-Organism-Response) theory. By utilizing the perceived quality properties of product, using value and platform risk as stimuli, this research is intended to observe consumer purchase intention in different situations. Past literature on perceived risk has focused more on trading risk between buyers and sellers and has not specifically discussed consumer awareness of transaction risk on online auction platforms.
This research makes use of fMRI technology to observe the activation of certain regions of the brain related to fraud. In our experiment, participants (serving as consumers) will face three types of scenarios during online shopping (low perceived risk of platforms and high perceived quality of products; high perceived risk of platform, and high perceived quality of products). From this experiment, we observe the participants purchase intention and also verify neuronal activation in specific brain areas related to fraud and risk decisions. Based on past literature, we hypothesized Insula, DLPFC and ACC activation to be related either to high perceived risk of platforms or low perceived quality of products.
The results of this study indicated that when participants under fraud scenarios, the dorsolateral prefrontal cortex、the anterior cingulate cortex、postcentral gyrus and superior temporal gyrus were activated to produce a reaction. In addition, when consumers in high-risk situations, participants brain Island (Insula), back to the parietal lobe (Superior Frontal Gyrus), the inferior frontal gyrus (Inferior Frontal Gyrus), all produce significant reaction.
論文目次 Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Purposes 6
1.3 Research Process 7
1.4 Research scope and limitations 8
Chapter 2 Literature Review 10
2.1 Online consumption type 10
2.1.1 Different types of transactions 11
2.1.2 Different transactions platform 16
2.1.3 Consumer second-hand products behavior 24
2.2 Perceived risk and perceived quality of online consumers 27
2.2.1 Common fraud events during online shopping 34
2.2.2 Common online seller fraud events 36
2.2.3 Stimulus-Organism-Response theory and Gestalt theory 37
2.3 Brain Imaging and fraud risk 40
Chapter 3 Research methods 46
3.1 Research Model 48
3.2 Research Participants 48
3.3 Experimental situation and Tools 49
3.4 Experimental Process 54
3.5 Data collection methods 56
3.6 fMRI analysis method 57
Chapter 4 Data Analysis 58
4.1 Study participants 58
4.2 Questionnaire Analysis 58
4.2.1 Descriptive Analysis 59
4.2.2 Homogeneity Analysis 64
4.2.3 Reliability Analysis 68
4.3 fMRI data Analysis 70
4.3.1 Behavioral data 71
4.3.2 Imaging data 73
4.4 Interview analysis 79
Chapter 5 Conclusion 82
5.1 Discussion 82
5.1.1 Perceive to be fraud 82
5.1.2 High risk and low risk of scenarios 85
5.2 Contributions 88
5.2.1 Academic Contribution 88
5.2.2 Practical Contributions 92
5.3 Limitation and Future Research 95
Reference 96
Appendix 1 Safety checklist 102
Appendix 2 Subjects Consent 103
Appendix 3 Survey 109

參考文獻 Aaker, D. A. (2012). Building strong brands.Simon and Schuster.
Abe, N., Suzuki, M., Tsukiura, T., Mori, E., Yamaguchi, K., Itoh, M., &Fujii, T.
(2006). Dissociable roles of prefrontal and anterior cingulate cortices in
deception. Cerebral Cortex, 16(2), 192-199.
Akaah, I. P., &Korgaonkar, P. K. (1988). A conjoint investigation of the relative
importance of risk relievers in direct marketing. Journal of Advertising Research, 28(4), 38-44.
Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair
enhanced perception of emotionally salient events. Nature, 411(6835), 305-309.
Ariely, D., &Berns, G. S. (2010).Neuromarketing: the hope and hype of neuroimaging
in business. Nature reviews neuroscience, 11(4), 284-292.
Aron, A. R., Robbins, T. W., &Poldrack, R. A. (2004). Inhibition and the right inferior
frontal cortex. Trends in cognitive sciences, 8(4), 170-177.
Bagozzi, R. P. (1986). Principles of marketing management. Chicago, IL: Science
Research Associates.
Ballesteros, J. (1989). Postmodernidaddecadencia o resistencia.
Bechara, A., Damasio, H., &Damasio, A. R. (2000). Emotion, decision making and the
orbitofrontal cortex. Cerebral cortex, 10(3), 295-307.
Bekaert, G., Hoerova, M., &Duca, M. L. (2013). Risk, uncertainty and monetary
policy. Journal of Monetary Economics, 60(7), 771-788.
Ba, S., Whinston, A. B., & Zhang, H. (2003). Building trust in online auction markets
through an economic incentive mechanism. Decision Support Systems, 35(3), 273-286.
Ba, S., &Pavlou, P. A. (2002). Evidence of the effect of trust building technology in
electronic markets: Price premiums and buyer behavior. MIS quarterly, 243-268.
Bauer, H. H., Falk, T., &Hammerschmidt, M. (2006).eTransQual: A transaction
process-based approach for capturing service quality in online shopping. Journal
of Business Research, 59(7), 866-875.
Becherer, R. C., & Halstead, D. (2004). Characteristics and internet marketing
strategies of online auction sellers. International Journal of Internet Marketing and Advertising, 1(1), 24-37.
Bhatt, S., Mbwana, J., Adeyemo, A., Sawyer, A., Hailu, A., &Vanmeter, J. (2009).
Lying about facial recognition: an fMRI study. Brain and cognition,69(2),
382-390.
Brockman, P., & Chung, D. Y. (2000). An empirical investigation of trading on
asymmetric information and heterogeneous prior beliefs. Journal of Empirical Finance, 7(5), 417-454.
Chen, H. S., & Hsieh, T. (2011). The effect of atmosphere on customer perceptions and
customer behavior responses in chain store supermarkets.African Journal of Business Management, 5(24), 10054-10066.
Chen, J., Xie, X., & Jing, F. (2011, August).The security of shopping online.
InElectronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on (Vol. 9, pp. 4693-4696).IEEE.
Christ, S. E., Van Essen, D. C., Watson, J. M., Brubaker, L. E., & McDermott, K. B.
(2009). The contributions of prefrontal cortex and executive control to deception:
evidence from activation likelihood estimate meta-analyses.Cerebral
Cortex, 19(7), 1557-1566.
Choi, S., Nesheim, L., &Rasul, I. (2015). Reserve price effects in auctions: estimates
from multiple RD designs.
Chua, C. E. H., Wareham, J., & Robey, D. (2007). The role of online trading
communities in managing internet auction fraud. MIS Quarterly, 759-781.
Correa, T., Hinsley, A. W., & De Zuniga, H. G. (2010). Who interacts on the Web?: The
intersection of users’ personality and social media use. Computers in Human
Behavior, 26(2), 247-253.
Cox, D. F. (1967).Risk taking and information handling in consumer behavior.
Cunningham, S. M. (1967). The major dimensions of perceived risk. Risk taking and information handling in consumer behavior, 82-108.
Duncan, J. (2001). An adaptive coding model of neural function in prefrontal
cortex. Nature Reviews Neuroscience, 2(11), 820-829.
Flavián, C., &Guinalíu, M. (2006). Consumer trust, perceived security and privacy
policy: three basic elements of loyalty to a web site. Industrial Management & Data Systems, 106(5), 601-620.
Fullam, R. S., McKie, S., & Dolan, M. C. (2009). Psychopathic traits and deception:
functional magnetic resonance imaging study. The British Journal of
Psychiatry, 194(3), 229-235.
Fujii, T., Fukatsu, R., Yamadori, A., Suzuki, K., &Odashima, K. (1997). Disordered
integration of heteromodal short-term cognitive operations: a breakdown of
working memory. Neurocase, 3(4), 289-296.
Gavish, B., &Tucci, C. L. (2008). Reducing internet auction fraud.Communications of
the ACM, 51(5), 89-97.
Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6),
725-737.
Hendel, I., &Lizzeri, A. (1999).Interfering with secondary markets. The Rand Journal
of Economics, 1-21.
Hsieh, J. Y., & Liao, P. W. (2011). Antecedents and moderators of online shopping
behavior in undergraduate students. Social Behavior and Personality: an
international journal, 39(9), 1271-1280.
Huang, W. Y., Schrank, H., & Dubinsky, A. J. (2004). Effect of brand name on
consumers' risk perceptions of online shopping. Journal of Consumer
Behaviour, 4(1), 40-50.
Jaeger, C. C., Webler, T., Rosa, E. A., &Renn, O. (2013). Risk, uncertainty and
rational action. Routledge.
Jehiel, P., &Lamy, L. (2015). On absolute auctions and secret reserve prices.The RAND
Journal of Economics, 46(2), 241-270.
Johnson, R., Barnhardt, J., & Zhu, J. (2004). The contribution of executive processes to
deceptive responding. Neuropsychologia, 42(7), 878-901.
Jøsang, A., Ismail, R., & Boyd, C. (2007). A survey of trust and reputation systems for
online service provision. Decision support systems, 43(2), 618-644.
Karim, A. A., Schneider, M., Lotze, M., Veit, R., Sauseng, P., Braun, C., &Birbaumer,
N. (2010). The truth about lying: inhibition of the anterior prefrontal cortex
improves deceptive behavior. Cerebral Cortex, 20(1), 205-213.
Karton, I., & Bachmann, T. (2011). Effect of prefrontal transcranial magnetic
stimulation on spontaneous truth-telling. Behavioural brain research, 225(1),
209-214.
Kirkegaard, R. (2012). A mechanism design approach to ranking asymmetric
auctions. Econometrica, 80(5), 2349-2364.
Köhler, W. (1929).Gestalt psychology. New York: Liveright.
Kozel, F. A., Padgett, T. M., & George, M. S. (2004). A replication study of the neural
correlates of deception. Behavioral neuroscience, 118(4), 852.
Kozel, F. A., Revell, L. J., Lorberbaum, J. P., Shastri, A., Elhai, J. D., Horner, M. D., ...
& George, M. S. (2004). A pilot study of functional magnetic resonance imaging brain correlates of deception in healthy young men. The Journal of neuropsychiatry and clinical neurosciences.
Knight, F. H. (2012). Risk, uncertainty and profit. Courier Corporation.
Kuhnen, C. M., & Knutson, B. (2005).The neural basis of financial risk taking.
Neuron, 47(5), 763-770.
Langleben, D. D., Schroeder, L., Maldjian, J. A., Gur, R. C., McDonald, S., Ragland, J.
D.,& Childress, A. R. (2002). Brain activity during simulated deception: an
event-related functional magnetic resonance study. Neuroimage,15(3), 727-732.
Lee, N., Broderick, A. J., & Chamberlain, L. (2007). What is ‘neuromarketing’? A
discussion and agenda for future research. International Journal of Psychophysiology, 63(2), 199-204.
Lee, H., Choi, J., Kim, K. K., & Lee, A. R. (2014). Impact of Anonymity on
Information Sharing through Internal Psychological Processes: A Case of South Korean Online Communities. Journal of Global Information Management (JGIM), 22(3), 57-77.
Lee, K. S., & Tan, S. J. (2003). E-retailing versus physical retailing: A theoretical
model and empirical test of consumer choice. Journal of Business Research, 56(11), 877-885.
Lopes, P. N., Salovey, P., & Straus, R. (2003). Emotional intelligence, personality, and
the perceived quality of social relationships. Personality and individual
Differences, 35(3), 641-658.
Mehrabian, A., & Russell, J. A. (1974).An approach to environmental psychology.the
MIT Press.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex
function. Annual review of neuroscience, 24(1), 167-202.
Miyazaki, A. D., & Fernandez, A. (2001). Consumer perceptions of privacy and
security risks for online shopping. Journal of Consumer affairs, 35(1), 27-44.
Mohr, P. N., Biele, G., &Heekeren, H. R. (2010).Neural processing of risk. The
Journal of neuroscience, 30(19), 6613-6619.
Mummalaneni, V. (2005). An empirical investigation of Web site characteristics,
consumer emotional states and on-line shopping behaviors.Journal of Business Research, 58(4), 526-532.
Navon, D. (1977). Forest before trees: The precedence of global features in visual
perception. Cognitive psychology, 9(3), 353-383.
Newman, G. R., & Clarke, R. V. (2013). Superhighway robbery.Routledge.
Nissenbaum, H. (1999). The meaning of anonymity in an information age. The
Information Society, 15(2), 141-144.
Nunez, J. M., Casey, B. J., Egner, T., Hare, T., & Hirsch, J. (2005). Intentional false
responding shares neural substrates with response conflict and cognitive
control. Neuroimage, 25(1), 267-277.
Öhman, A. (2002). Automaticity and the amygdala: Nonconscious responses to
emotional faces. Current directions in psychological science, 11(2), 62-66.
O'malley, P. (2012). Risk, uncertainty and government.Routledge.
Paulus, M. P., Rogalsky, C., Simmons, A., Feinstein, J. S., & Stein, M. B. (2003).
Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage, 19(4), 1439-1448.
Pavlou, P. A., &Gefen, D. (2005). Psychological contract violation in online
marketplaces: Antecedents, consequences, and moderating role. Information
systems research, 16(4), 372-399.
Pessoa, L. (2005). To what extent are emotional visual stimuli processed without
attention and awareness?. Current opinion in neurobiology, 15(2), 188-196.
Pires, G., Stanton, J., & Eckford, A. (2004). Influences on the perceived risk of
purchasing online. Journal of Consumer Behaviour, 4(2), 118-131.
Reimann, M., Schilke, O., Weber, B., Neuhaus, C., &Zaichkowsky, J. (2011).
Functional magnetic resonance imaging in consumer research: A review and application. Psychology & Marketing, 28(6), 608-637.
Resnick, P., Kuwabara, K., Zeckhauser, R., & Friedman, E. (2000). Reputation
systems. Communications of the ACM, 43(12), 45-48.
Rilling, J. K., King-Casas, B., &Sanfey, A. G. (2008). The neurobiology of social
decision-making. Current opinion in neurobiology, 18(2), 159-165.
Rilling, J. K., &Sanfey, A. G. (2011). The neuroscience of social
decision-making. Annual review of psychology, 62, 23-48.
Roselius, T. (1971).Consumer rankings of risk reduction methods. The journal of
marketing, 56-61.
Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal
cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage, 20(1), 351-358.
Sanfey, A. G., Hastie, R., Colvin, M. K., &Grafman, J. (2003). Phineas gauged:
decision-making and the human prefrontal cortex. Neuropsychologia,41(9),
1218-1229.
Schneider, T., &Woolgar, S. (2012). Technologies of ironic revelation: Enacting
consumers in neuromarkets. Consumption Markets & Culture, 15(2), 169-189.
Shih, C. H., & Chang, G. H. (2006). Anslyses of consuming features and magnaing
strategies to SHPs. Consumer Economics, 22(3), 64-67.
Sirdeshmukh, D., Singh, J., & Sabol, B. (2002). Consumer trust, value, and loyalty in
relational exchanges. Journal of marketing, 66(1), 15-37.
Steenkamp, J. B. E., Batra, R., & Alden, D. L. (2003). How perceived brand globalness
creates brand value. Journal of International Business Studies,34(1), 53-65.
Snoj, B., PisnikKorda, A., &Mumel, D. (2004). The relationships among perceived
quality, perceived risk and perceived product value. Journal of Product & Brand Management, 13(3), 156-167.
Solnais, C., Andreu-Perez, J., Sánchez-Fernández, J., &Andréu-Abela, J. (2013). The
contribution of neuroscience to consumer research: A conceptual framework and empirical review. Journal of Economic Psychology, 36, 68-81.
Spence, S. A. (2004). The deceptive brain. Journal of the Royal Society of
Medicine, 97(1), 6-9.
Wagner, T., & Rudolph, T. (2010). Towards a hierarchical theory of shopping
motivation. Journal of Retailing and Consumer Services, 17(5), 415-429.
Wang, K., Wang, E. T., & Tai, C. F. (2002). A study of online auction sites in Taiwan:
product, auction rule, and trading type. International Journal of Information Management, 22(2), 127-142.
Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to
decision-making. Annu. Rev. Neurosci., 30, 31-56.
Wei, Y. H. (2012). A Study on Factors that Affect Online Game User’s Behavioral
Intention to Online Channel.
Whalen, P. J., Kagan, J., Cook, R. G., Davis, F. C., Kim, H., Polis, S., ...& Johnstone, T.
(2004). Human amygdala responsivity to masked fearful eye whites. Science, 306(5704), 2061-2061.
Yin, S., Ray, S., Gurnani, H., &Animesh, A. (2010). Durable products with multiple used goods markets: Product upgrade and retail pricing implications.Marketing Science, 29(3), 540-560.
Zhou, L., Dai, L., & Zhang, D. (2007).Online shopping acceptance model-A critical survey of consumer factors in online shopping. Journal of Electronic Commerce Research, 8(1), 41-62.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw