系統識別號 U0026-1307201421471900 論文名稱(中文) 電磁感應加熱系統之電路模擬分析與溫度預測模型建置 論文名稱(英文) Electromagnetic Induction Heating System Simulation and Temperature Prediction Modeling 校院名稱 成功大學 系所名稱(中) 電機工程學系 系所名稱(英) Department of Electrical Engineering 學年度 102 學期 2 出版年 103 研究生(中文) 蔡志遠 研究生(英文) Chih-Yuan Tsai 學號 n26010245 學位類別 碩士 語文別 中文 論文頁數 85頁 口試委員 指導教授-戴政祺口試委員-黃世杰口試委員-江朝文口試委員-張益三 中文關鍵字 電磁感應加熱系統  電磁熱療  溫度熱模型 英文關鍵字 Electromagnetic induction heating system  Thermotherapy  Temperature-based thermal model 學科別分類 中文摘要 電磁感應加熱系統是藉由高頻感應加熱器產生一交變磁場，進而利用金屬針的感磁特性，使金屬針具迅速升溫達到不同組織燒灼所需要之溫度，藉此殺死腫瘤細胞並達到熱療之效果。本研究主要以醫療的角度建置一套預測醫療金屬針溫度發展趨勢之模型，並且因應不同的實驗條件，預判未來加熱的溫度趨勢，達到節省醫療手術與實驗所耗費的時間以及人力。此外，醫用熱療之電磁模組是利用頻率調控輸出功率，因此本文所建置的溫度熱模型將結合系統電路模擬以及數學模型歸納，利用龐大的溫度數據資料庫，將溫度變化量階梯化，再藉由溫度變化量反推當前溫度，使模擬結果與實際加熱實驗有相同的溫升趨勢，避免受到外界環境因素的影響，確保皆有一致的實驗結果。 英文摘要 The electromagnetic induction heating system is a system used to generate alternating magnetic fields for heating applications. In thermotherapy applications, metal needles are used because of their magnetic properties. The magnetic fields converge at the medical metal needles, the temperature of which increases rapidly and reaches the temperatures necessary for various processes of tissue ablation. Thus, tumor cells are killed and thermotherapy is achieved. In this study, a model for predicting the temperature trend of medical metal needles was developed from a medical perspective. Based on various experimental conditions, the temperature trends during heating are predicted to reduce the time and manpower consumed in medical surgeries and experiments. Furthermore, in the electromagnetic modules used in thermotherapy, frequency is used to regulate output power. Therefore, the temperature-based thermal model developed in this study incorporated system circuit simulation and mathematical model induction. A database with a massive amount of temperature data was employed. Temperature variations were stratified before the variations were used to deduce current temperatures. This step ensures that the simulated results and the actual results obtained in the heating experiment exhibited consistent temperature trends, thereby preventing the effects of external environmental factors and ensuring consistent experimental results. 論文目次 摘 要 I Extended Abstract II 誌謝 IX 圖目錄 XIII 表目錄 XVI 符號表 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 電磁熱燒灼概要 2 1-3 國內外文獻回顧 5 1-4 研究動機與目的 8 1-5 論文架構 10 第二章 感應加熱之基本介紹與背景理論 11 2-1 前言 11 2-2 電磁感應基礎原理 11 2-3 感應加熱之特性 13 2-3-1 磁滯損 (Hysteresis loss) 13 2-3-2 渦流損 (Eddy current loss) 13 2-3-3 集膚效應 (Skin effect) 14 2-3-4 鄰近效應 (Proximity effect) 15 第三章 感應加熱系統之模型設計與分析 16 3-1 簡介 16 3-2 高週波感應加熱系統電路模型 16 3-2-1 理想RLC串聯諧振電路 18 3-2-2 串聯諧振式轉換器種類分析與原理 20 3-2-3 全橋串聯諧振轉換器架構 21 3-2-4 全橋串聯諧振式轉換器原理及分析 22 3-2-5 全橋串聯諧振式轉換器操作模式 25 3-3 溫度預測迴歸方程式之數學模型 29 3-3-1 迴歸分析簡介 29 3-3-2 非線性迴歸 30 3-4 金屬針電功率計算溫度預估演算法之熱模型 32 3-4-1 金屬針電功率與溫升計算 32 3-5 溫度預估演算法 34 第四章 系統模擬分析與實驗結果討論 36 4-1 前言 36 4-2 整體系統簡介 36 4-3 全橋串聯諧振式系統電路模擬 39 4-3-1 感應線圈探頭量測 41 4-3-2 MATLAB/Simulink全橋系統電路模擬 44 4-4 定頻溫度預測迴歸方程式 50 4-4-1 空針定頻溫度預測迴歸方程式實驗 52 4-4-2豬肝定頻溫度預測迴歸方程式實驗 58 4-5 任意變頻之溫度趨勢預測模型 62 4-5-1 任意變頻之空針加熱實驗 62 4-5-2 任意變頻之豬肝加熱實驗 66 4-6 溫度控制之溫度趨勢預測模型 70 4-6-1 空針之溫度控制加熱實驗 70 4-6-2 豬肝之溫度控制加熱實驗 72 4-7 實驗結果與討論分析 74 第五章 結論與未來展望 77 5-1 結論 77 5-2 未來展望 78 參考文獻 79 自述 85 參考文獻 [1] 辛達塔．穆克吉，「萬病之王」，時報出版社，2012。 [2] Y. Gao, Y. Wang, Y. Duan, C. Li, Y. Sun, D. Zhang, T. Lu, P. Liang, "915MHz microwave ablation with high output power in in vivo porcine spleens," European Journal of Radiology 75 (2010) 87–90, 2010. [3] P. Mertyna, M. W. Dewhist, E. Halpern, W. Goldberg, and S. N. Goldberg, "Radiofrequency ablation: The effect of distance and baseline temperature on thermal dose required for coagulation," Int. J. Hyperthermia, November 2008. [4] C. L. Brace, T. A. Diaz, J. L. Hinshaw, F. T. Lee Jr, "Tissue Contraction Caused by Radiofrequency and Microwave Ablation: A Laboratory Study in Liver and Lung," Journal of Vascular and Interventional Radiology, Volume 21, Issue 8, Pages 1280–1286, 2010. [5] G. Carrafiello, D. Lagana, M. Mangini, F. Fontana, G. Dionigi, L. Boni, F. Rovera, S. Cuffari, C. Fugazzola, "Microwave tumors ablation: Principles, clinical applications and review of preliminary experiences," International Journal of Surgery, Volume 6, Supplement 1, Pages S65–S69, 2008. [6] J. W. Jenne, T. Preusser, and M. Günther, "High-intensity focused ultrasound: Principles, therapy guidance, simulations and applications," Zeitschrift für Medizinische Physik, Volume 22, Issue 4, Pages 311–322, 2012. [7] 范紋鳳、黃仲偉、陳俊杉、陳文翔，「氣泡在高能聚焦超音波燒灼影響之研究」，中華民國力學學會第三十三屆全國力學會議，2009。 [8] G. Ma, Guotai Jiang, "Review of Tumor Hyperthermia Technique in Biomedical Engineering Frontier,"3rd International Conference on Biomedical Engineering and Informatics, 2010. [9] D. K. Swanson, W. J. Smith, T. Ibrahim, and Andrew S. Wechsler, "Tissue Temperature Feedback Control of Power The Key to Successful Ablation," International Society for Minimally Invasive Cardiothoracic Surgery, 2011. [10] R. Tucker, "Use of interstitial temperature self-regulating thermal rods in the treatment of prostate cancer," Journal of endourology, vol. 17, pp. 601-607, 2003. [11] R. K. Gilchrist, "Selective inductive heating of lymph nodes," Annals of Surgery, vol. 146, p. 596, 1957. [12] P. Cobos, M. Maicas, M. Sanz, and C. Aroca, "High Resolution System for Nanoparticles Hyperthermia Efficiency Evaluation," IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 10, 2011. [13] B. Mehdaoui, A. Meffre, L. M. Lacroix, J. Carrey, S. Lachaize, M. Gougeon, M. Respaud, and B. Chaudret, "Large specific absorption rates in the magnetic hyperthermia properties," Journal of Magnetism and Magnetic Materials 322, 2010. [14] K. Yamada, T.Oda, S.Hashimoto, T.Enomoto, N.Ohkochi, H. Ikeda, H. Yanagihara, M. Kishimoto, E. Kita, A. Tasaki, M. Satake, Y. Ikehata, "Minimally required heat doses for various tumors sizes in induction," Int. J. Hyperthermia, August 2010. [15] D. Paesa, S. Llorente, C. Sagüés, and Ó. Aldana, "Adaptive Observers Applied to Pan Temperature Control of Induction Hobs," IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 45, NO. 3, May/June 2009. [16] C. Franco, D. Paesa, C. Sagues, S. Llorente, "Analytical Modeling of a Saucepan in an Induction hob," 18th Mediterranean Conference on Control & Automation, June 23-25, 2010. [17] U. Has, D. Wassilew, "Temperature Control for Food in Pots on Cooking Hobs," IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 5, October 1999. [18] J. K. Enholm, M. O. Kohler, B. Quesson, C. Mougenot, C. T. W. Moonen, S. D. Sokka, "Improved Volumetric MR-HIFU Ablation by Robust Binary Feedback Control," IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 1, January 2010. [19] X. Chen, and J. Jin, "HTS Resonant Technology and Its Application on Induction Heating," IEEE International Conference on Applied Superconductivity and Electromagnetic Devices Chengdu, 2009. [20] C. H. Cheng, "Design of Fuzzy Controller for Induction Heating Using DSP," 5th IEEE Conference on Industrial Electronics and Applicationsis, 2010. [21] Y. Wang, and F. Ca, "Induction Heating Power Supply Temperature Control Based on a Novel Fuzzy Controller," International Conference on Computer and Electrical Engineering,2008. [22] V. Tipsuwanporn, S. Intajag, A. Charean, and W. Sawaengsinkasikit, "Adjustable frequency control using BRM for induction heating, " The 4th International Power Electronics and Motion Control Conference, 2004. [23] L. A. Barragán, D. Navarro, J. Acero, I. Urriza, and J. M. Burdío, "FPGA Implementation of a Switching Frequency Modulation Circuit for EMI Reduction in Resonant Inverters for Induction Heating Appliances," IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 1, January 2008. [24] Y. L. Cui, K. He, Z. W. Fan, H. L. Fan, " STUDY ON DSP-BASED PLL-CONTROLLED SUPERAUDIO INDUCTION HEATING POWER SUPPLY SIMULATION," Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005. [25] T. T. Nguyen, and Y. S. Yang, "Using Neural Network for predicting induction-heating paths in shipyard," International Conference on Computer Technology and Development, 2009. [26] Y. Wang, "Study of Induction Heating Power Supply Based on Fuzzy Controller," Industrial Electronics and Applications, 2009. [27] T. Isobe, Y. Miyaji, T. Kitahara, K. Fukutani and R. Shimada, "Soft-switching Inverter for Variable Frequency Induction Heating Using Magnetic Energy Recovery Switch (MERS)," Power Electronics and Applications, 2009. [28] H. Sarnago, A. Mediano, and O. Lucia, "High Efficiency AC–AC Power Electronic Converter Applied to Domestic Induction Heating," IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 8, August 2012. [29] C. F. Huang, X. Z. Lin, and W. H. Lo, "Design and Construction of a Hyperthermia System with Improved Interaction of Magnetic Induction-Heating," 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31 - September 4, 2010. [30] 陳建興，「全橋相移式高頻溫控感應加熱器之設計與研製」，私立中原大學電機工程學系碩士論文，2005。 [31] 黃則通，「以DSP設計模糊感應加熱控制器」，私立逢甲大學電機工程學系碩士論文，2009。 [32] 楊易儒，「應用於磁場感應熱療的線圈系統之設計」，私立大同大學通訊工程研究所碩士論文，2009。 [33] 曹志謙，「非對稱控制技術於全橋式零電壓感應加熱器之應用」，國立虎尾科技大學光電與材料科技研究所，2009。 [34] 范家瑞，「電磁感應技術應用於模具快速加熱系統」，國立成功大學機械工程學系碩士論文，2008。 [35] 陳明坤，「磁性奈米粒子熱治療系統」，國科會提案計畫報告，2006。 [36] 蕭正昌，「應用於腫瘤熱療之奈米磁粒加熱系統研製」，國立成功大學電機工程學系碩士論文，2006。 [37] 陳明坤、戴政祺，「半橋式串聯共振變流器於磁性奈米粒子熱療系統之應用」，生物醫學工程科技研討會暨國科會醫學工程學門成果發表會，2006。 [38] 陳建璋，「半橋串聯共振式磁奈米粒熱療加熱系統研製」，國立成功大學電機工程學系碩士論文，2007。 [39] 陳建璋、戴政祺，「半橋串聯共振式磁奈米粒熱療加熱系統研製」，生物醫學工程科技研討會暨國科會醫學工程學門成果發表會，2007。 [40] 陳建良、戴政祺，「變頻半橋感應式磁奈米粒熱療加熱系統」，生物醫學工程科技研討會暨國科會醫學工程學門成果發表會，2007。 [41] 陳建良，「變頻半橋感應式磁奈米粒熱療加熱系統」，國立成功大學電機工程學系碩士論文，2007。 [42] C. C. Chen, C. C. Tai, J. L. Chen, "The design of an applicator and half-bridge series-resonant type heating system for magnetic nanoparticle thermotherapy," IEEE International Magnetics Conference, 2009. [43] 陳俊成，「應用於奈米磁粒之半橋串聯諧振式雙頻耦合熱療加熱系統」，國立成功大學電機工程學系碩士論文，2008。 [44] 蘇信華，「奈米磁粒熱療感應加熱系統之研製」，國立成功大學電機工程學系碩士論文，2008。 [45] 蘇信華、戴政祺，「磁奈米粒熱療感應加熱系統之研製」，生物醫學工程科技研討會暨國科會醫學工程學門成果發表會，2008。 [46] 孔維彬，「以有限元素分析法作感應加熱線圈分析」，國立成功大學電機工程學系碩士論文，2008。 [47] 林子翔，「奈米粒熱療加熱系統之中低頻磁場聚焦探頭設計」，國立成功大學電機工程學系碩士論文, 2009。 [48] 徐彬翔，「高頻感應加熱器之DSP數位控制設計」，國立成功大學電機工程學系碩士論文，2011。 [49] 陳勁克，「以DSP建構數位監控系統於腫瘤電磁熱療系統」，國立成功大學電機工程學系碩士論文， 2011。 [50] 曾名弘，「奈米粒熱療加熱系統之模擬與探頭模型分析」，國立成功大學電機工程學系碩士論文， 2011。 [51] 徐彬翔、戴政祺、吳明璋，「高頻感應加熱器之DSP數位控制設計」，生物醫學工程科技研討會暨國科會醫學工程學門成果發表會，2011。 [52] 陳勁克、戴政祺、游本傳，「以DSP建構數位監控系統於腫瘤電磁熱療加熱器」， 生物醫學工程科技研討會暨國科會醫學工程學門成果發表會，2011。 [53] 曾名弘、戴政祺、陳仰豪、曾子庭，「奈米粒熱療加熱系統之模擬與探頭模型分析」，生物醫學工程科技研討會暨國科會醫學工程學門成果發表會，2011。 [54] 吳明璋，「大功率電磁熱療系統之數位回授溫度控制」，國立成功大學電機工程學系碩士論文，2012。 [55] 游本傳，「15-kW數位控制式高週波加熱系統之自動頻率追蹤」，國立成功大學電機工程學系碩士論文，2012。 [56] 曾子庭，「電磁熱療系統之即時數位電流回授控制」，國立成功大學電機工程學系碩士論文，2012。 [57] 陳仰豪，「多頻段感應加熱系統設計與大電流感測應用」，國立成功大學電機工程學系碩士論文，2012。 [58] 吳宗勳，「高功率感應加熱系統之數位溫度回授控制電路設計與腫瘤熱療應用」，國立成功大學電機工程學系碩士論文，2013。 [59] 楊浚鴻，「電磁熱療系統介面設計及電路改良研究」，國立成功大學電機工程學系碩士論文，2013。 [60] 林璟宏，「金屬針生物組織電磁熱燒灼微創治療系統介面設計與溫升分析」，國立成功大學電機工程學系碩士論文，2013。 [61] H. Y. Tseng, C. Y. Lee, Y. H. Shih, X. Z. Lin, G. B. Lee, "Hyperthermia Cancer Therapy Utilizing Superparamagnetic Nanoparticles," Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 16 - 19, 2007, Bangkok, Thailand. [62] H. Y Tseng, C. Y. Lee, Y. H. Shih, X. Z. Lin, G. B. Lee, "Localized Heating of Tumor Cells Utilizing Superparamagnetic Nanoparticles," Proceedings of the 7th IEEE International Conference on Nanotechnology, August 2 - 5, 2007, Hong Kong. [63] T. Naohara, H. Aono, T. Maehara, H. Hirazawa, S. Matsutomo and Y. Watanabe, "Development of Ti-Coated Ferromagnetic Needle, Adaptable for Ablation Cancer Therapy by High-Frequency Induction Heating," Journal of Functional Biomaterials ISSN 2079-4983, 2012. [64] C. C. Chen, C. C. Tai, S. J. Huang, Y. H. Chen, " Thermotherapy Induction Heating Apparatus With New Magnetic-Wrapped Coil Design," IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 5, May 2014. [65] T. Naohara, H. Aono, T. Maehara, H. Hirazawa, S. Matsutomo and Y. Watanabe, "Heat generation ability in AC magnetic field of needle-type Ti-coated mild steel for ablation cancer therapy," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Vol. 30 No. 5, 2011. [66] S. C. Huang, Y. Y. Chang, Y. J. Chao, Y. S. Shan, X. Z. Lin, and G. B. Lee, "Dual-Row Needle Arrays Under an Electromagnetic Thermotherapy System for Bloodless Liver Resection Surgery," IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 3, March 2012. [67] 黃聖傑，「電療熱療系統於內科微創手術及外科臟器切除之應用」，國立成功大學工程科學系碩士論文，2010。 [68] S. C. Huang, J. W. Kang, H. W. Tsai, Y. S. Shan, X. Z. Lin, G. B. Lee, "Electromagnetic Thermotherapy System With Needle Arrays: A Practical Tool for the Removal of Cancerous Tumors," IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 2, FEBRUARY 2014. [69] S. C. Huang, Y. Y. Chang, Y. J. Chao, Y. S. Shan, X. Z. Lin, and G. B. Lee, "Dual-Row Needle Arrays Under an Electromagnetic Thermotherapy System for Bloodless Liver Resection Surgery," IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 3, MARCH 2012. [70] C. F. Huang, X. Z. Lin, W. H. Lo, "Design and Construction of a Hyperthermia System with Improved Interaction of Magnetic Induction-Heating," 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31 - September 4, 2010. [71] 賴耿陽，「高週波工業應用技術」，復漢出版社，1987。 [72] 陳熹棣，「高週波基礎理論與應用 淬火、微波加熱、電漿、超音波加工」，全華出版社，1995。 [73] S. L. Semiatin, D. E. Stutz, “Induction Heat Treatment of Steel”,American Society for Metals, 1986. [74] 張仁安，「氣體式快速模具表面動態溫控方法建置與分析之研究」，中原大學機械工程學系，2008。 [75] 陳順宇，「迴歸分析」，華泰書局，2000。 論文全文使用權限 同意授權校內瀏覽/列印電子全文服務，於2019-07-18起公開。同意授權校外瀏覽/列印電子全文服務，於2019-07-18起公開。

 如您有疑問，請聯絡圖書館 聯絡電話：(06)2757575#65773 聯絡E-mail：etds@email.ncku.edu.tw