進階搜尋


下載電子全文  
系統識別號 U0026-1307201223132100
論文名稱(中文) 鈷基超合金Haynes 188在不同溫度下之動態撞擊行為分析
論文名稱(英文) Dynaimc Impact Behavior of Haynes188 Cobalt Super Alloy under Various Temperatures
校院名稱 成功大學
系所名稱(中) 機械工程學系專班
系所名稱(英) Department of Mechanical Engineering (on the job class)
學年度 100
學期 2
出版年 101
研究生(中文) 高豪謙
研究生(英文) Hao-Chien Kao
學號 n17971044
學位類別 碩士
語文別 中文
論文頁數 104頁
口試委員 指導教授-李偉賢
口試委員-王俊志
口試委員-黃永茂
中文關鍵字 霍普金森桿  Haynes 188超合金  應變速率  差排 
英文關鍵字 Split Hopkinson bar  Haynes 188 superalloy  strain rate  dislocation 
學科別分類
中文摘要 本研究利用霍普金森高速撞擊試驗機,研究鈷基Haynes 188 超合金在不同溫度及應變速率之撞擊特性與微觀結構,測試時試片溫度分別設定在25℃、400℃和800℃,而應變速率則為103 s-1、3×103 s-1和5×103 s-1,以探討溫度及應變速率在塑變行為及微觀結構上之效應;同時利用SEM及TEM進行微觀結構的觀察,以解析巨觀特性與微觀結構兩者間之關連性。實驗結果顯示,溫度與應變速率對Haynes 188超合金的機械性質影響甚鉅。在相同溫度條件下,其塑流應力值、加工硬化率與應變速率敏感性係數均會隨應變速率之增加而上升,但熱活化體積會變小。在相同應變速率條件下,其塑流應力值、加工硬化率與應變速率敏感性係數則會隨溫度之增加而下降,不過熱活化體積會變大。另外,藉由Zerilli-Armstrong構成方程式,可精確的描述Haynes 188超合金的塑性變形行為。由掃描式電子顯微鏡得知其破壞模式,會沿著最大剪應力方向同時發生延性剪切破壞;另由穿透式電子顯微鏡之微觀結構分析,可清楚的觀察到差排密度會隨著應變速率上升而增加,但隨著溫度的上升而減少。而差排密度與塑變應力間之關係可藉由Bailey-Hirsch type關係式來定量描述,材料強度的上升主要歸因於高速變形下,差排増值速率的提升。
英文摘要 This study uses a split-Hopkinson bar to investigate the plastic deformation behavior of Haynes 188 super alloy at the strain rates of 1000 s-1, 3000 s-1 and 5000 s-1 and the temperatures of 25℃, 400℃and 800℃, respectively. Based on the experimental results and microscopic observations, the correlations between mechanical properties and microstructure are established. The experimental results indicate that the effects of temperature and strain rate on mechanical properties of Haynes 188 super alloy are significant. At constant temperature, the flow stress, work hardening rate and strain rate sensitivity increase with increasing strain rate, but the activation volume decreases. For a constant strain rate, the flow stress, work hardening rate and strain rate sensitivity decrease with increasing temperature, but the activation volume increases. Besides, the Zerilli-Armstrong constitutive equation can be used to describe the plastic deformation of Haynes 188 super alloy precisely. Scanning electron microscopy (SEM) fractographic observations show that the fracture features are characterized by ductile shear fracture and that knobbly structure form with respect to the direction of maximum shear stress. Transmission electron microscopy (TEM) observations show that the dislocation density increases with increasing strain rate, but decreases with increasing temperature. The relationship between the dislocation density and flow stress can be described by the Bailey-Hirsch type relation. The strengthening effect can be attributed by the napid multiplication of dislocations.
論文目次 中文摘要....................I
ABSTRACT..................II
誌謝......................III
總目錄.....................IV
表目錄.....................VII
圖目錄.....................VIII
符號說明....................XIV
第一章 前言..................1
第二章 理論與文獻回顧..........3
2-1 鈷基合金之介紹............3
2-2 Haynes 188之介紹.........4
2-3 塑性變形之機械測試類別......5
2-4 一維波傳理論..............7
2-5 霍普金森桿原理 ............8
2-6 材料塑性變形行為之特性......11
2-7 材料構成方程式............14
第三章 實驗方法與步驟..........24
3-1 實驗流程.................24
3-2 實驗儀器與設備............24
3-2-1 動態機械性質測試系統:霍普金森動態撞擊試驗機......24
3-2-2 加熱裝置...............26
3-2-3 雙噴射式電解拋光機.......26
3-2-4 低速切割機..............26
3-2-5 光學顯微鏡(OM).........27
3-2-6 掃描式電子顯微鏡(SEM)...27
3-2-7 穿透式電子顯微鏡(TEM)...27
3-3 實驗步驟..................28
3-3-1 實驗材料試件製備..........28
3-3-2 動態撞擊實驗 .............28
3-3-3 OM金相觀察..............30
3-3-4 SEM破斷面之觀察...........30
3-3-5 TEM試片製備..............30
第四章 實驗結果與討論............35
4-1 應力-應變曲線...............35
4-2 加工硬化率..................36
4-3 應變速率敏感性係數...........38
4-4 熱活化體積..................39
4-5 活化能.....................41
4-6 溫度敏感性係數...............42
4-7 理論溫升量..................43
4-8 材料構成方程式...............45
4-9 OM金相組織觀察...............46
4-10 SEM破壞形貌分析.............46
4-11 TEM差排結構特徵.............46
第五章 結論......................99
參考文獻 .......................101
參考文獻 1. H. International, "Haynes 188 Alloy", in High-Performance High-Temperature Alloys. p. 1-16.
2. H. Kolsky, "An investigation of the mechanical properties of materials at very high rates of loading". Proceedings of the Physical Society. Section B, 1949. 62: p. 676.
3. F. E. Hauser, "Techniques for measuring stress-strain relations at high strain rates". Experimental Mechanics, 1966. 6(8): p. 395-402.
4. D. Steinberg, S. Cochran and M. Guinan, "A constitutive model for metals applicable at high‐strain rate". Journal of Applied Physics, 1980. 51(3): p. 1498-1504.
5. J. Klepaczko, "Discussion of microstructural effects and their modelling at high rates of strain". 1989: p. 283-298.
6. L. Chen, P. Liaw, Y. He, M. Benson, J. Blust, P. Browning, R. Seeley and D. Klarstrom, "Tensile hold low-cycle fatigue behavior of cobalt-based Haynes 188 superalloy". Scripta materialia, 2001. 44(6): p. 859-865.
7. J. R. Davis, "Nickel, cobalt, and their alloys". Vol. 8. 2000: Asm Intl. 362-370

8. D. Klarstrom, "Wrought cobalt-base superalloys". Journal of materials engineering and performance, 1993. 2(4): p. 523-530.
9. M. J. Donachie, "Superalloys- Source book". Metals Park, OH, American Society for Metals, 1984, 424 p, 1984.
10. K. B. Sankara Rao, M. Castelli, G. Allen and J. R. Ellis, "A critical assessment of the mechanistic aspects in HAYNES 188 during low-cycle fatigue in the range 25 C to 1000 C". Metallurgical and Materials Transactions A, 1997. 28(2): p. 347-361.
11. D. Curran, L. Seaman and D. Shockey, "Linking dynamic fracture to microstructural processes". Shock waves and high-strain-rate phenomena in metals, 1981: p. 129-167.
12. U. Lindholm, "Measurement of Mechanical Properties, Techniques of Metals Research, Vol. 5, Part I, edited by RF Bunshah". 1971, Interscience Publishers, Inc., New York. p. 199-271.
13. U. Lindholm and L. Yeakley, "High strain-rate testing: tension and compression". Experimental Mechanics, 1968. 8(1): p. 1-9.
14. W. S. Lee and C. F. Lin, "Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures". Materials Science and Engineering: A, 1998. 241(1): p. 48-59.
15. J. Campbell, "Dynamic plasticity: macroscopic and microscopic aspects". Materials Science and Engineering, 1973. 12(1): p. 3-21.
16. D. Klahn, A. Mukherjee and J. Dorn, "Proceedings of the 2nd International Conference on the Strength of Metals and Alloys". Vol. III, ASM, 1970: p. 951.
17. J. Campbell and W. Ferguson, "The temperature and strain-rate dependence of the shear strength of mild steel". Philosophical Magazine, 1970. 21(169): p. 63-82.
18. A. Seeger, "CXXXII. The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow-stress of FCC crystals". Philosophical Magazine, 1955. 46(382): p. 1194-1217.
19. H. Conrad, "Thermally activated deformation of metals". JOM, 1964. 16(7): p. 582-588.
20. M. A. Meyers, D. J. Benson, O. Vöhringer, B. K. Kad, Q. Xue and H. H. Fu, "Constitutive description of dynamic deformation: physically-based mechanisms". Materials Science and Engineering: A, 2002. 322(1): p. 194-216.
21. A. Seeger, "Dislocations and mechanical properties of crystals". Wiley, New York, 1957: p. 243.
22. U. Lindholm and L. Yeakley, "Dynamic deformation of single and polycrystalline aluminium+". Journal of the Mechanics and Physics of Solids, 1965. 13(1): p. 41-53.
23. W. Ferguson, A. Kumar and J. Dorn, "Dislocation damping in aluminum at high strain rates". Journal of Applied Physics, 1967. 38(4): p. 1863-1869.
24. B. JD Campbell and A. Dowling, "The behaviour of materials subjected to dynamic incremental shear loading". Journal of the Mechanics and Physics of Solids, 1970. 18(1): p. 43-63.
25. Y. Bai and B. Dodd, "Adiabatic shear localization: occurrence, theories and applications". Vol. 2. 1992: Pergamon Press Oxford,, UK.
26. Z. Gronostajski, "The constitutive equations for FEM analysis". Journal of Materials Processing Technology, 2000. 106(1): p. 40-44.
27. P. Ludwik, "Elemente der Technologischen Mechanik Springer-Verlag OHG". 1909, Berlin. p. 32.
28. L. E. Malvern, B. U. D. o. A. Mathematics, U. S. O. o. N. Research and U. S. N. D. B. o. Ships, "The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect". 1949, Division of Applied Mathematics, Brown.
29. T. Vinh, M. Afzali and A. Roche, "Fast fracture of some usual metals at combined high strain and high strain rate". Mechanical Behavior of Materials, 1980: p. 633-642.
30. H. Kobayashi and B. Dodd, "A numerical analysis for the formation of adiabatic shear bands including void nucleation and growth". International journal of impact engineering, 1989. 8(1): p. 1-13.
31. H. Kobayashi and B. Dodd, "Formation of adiabatic shear bands in steel and titanium twisted at dynamic rates". J. Jpn. Soc. Technol. Plast., 1988. 29(334): p. 1152-1158.
32. L. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. Staudhammer, "A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study". Journal of Materials Processing Technology, 2007. 182(1): p. 319-326.
33. F. J. Zerilli and R. W. Armstrong, "Dislocation‐mechanics‐based constitutive relations for material dynamics calculations". Journal of Applied Physics, 1987. 61(5): p. 1816-1825.
34. D. Umbrello, R. M’saoubi and J. Outeiro, "The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel". International Journal of Machine Tools and Manufacture, 2007. 47(3): p. 462-470.
35. U. Andrade, M. Meyers and A. H. Chokshi, "Constitutive description of work-and shock-hardened copper". Scripta Metallurgica et Materialia;(United States), 1994. 30(7).
36. G. R. Johnson and W. H. Cook. "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures". 1983: The Hague, Netherlands: International Ballistics Committee.
37. T. Holmquist and G. Johnson, "Determination of constants and comparison of results for various constitutive models". J. Phys. Ⅲ, 1991: p. 853-860.
38. J. M. Lifshitz and H. Leber, "Data processing in the split Hopkinson pressure bar tests". International Journal of Impact Engineering, 1994. 15(6): p. 723-733.
39. W. S. Lee and H. F. Lam, "The deformation behaviour and microstructure evolution of high-strength alloy steel at high rate of strain". Journal of Materials Processing Technology, 1996. 57(3): p. 233-240.
40. S. Esmaeili, L. M. Cheng, A. Deschamps, D. J. Lloyd and W. J. Poole, "The deformation behaviour of AA6111 as a function of temperature and precipitation state". Materials Science and Engineering: A, 2001. 319: p. 461-465.
41. B. Viguier, "Dislocation densities and strain hardening rate in some intermetallic compounds". Materials Science and Engineering: A, 2003. 349(1): p. 132-135.
42. D. Chu and J. W. Morris, "The influence of microstructure on work hardening in aluminum". Acta materialia, 1996. 44(7): p. 2599-2610.
43. J. Harding, "Effect of temperature and strain rate on strength and ductility of four alloy steels". Metals Technology, 1977. 4: p. 6-16.
44. L. Shi and D. O. Northwood, "The mechanical behavior of an AISI type 310 stainless steel". Acta metallurgica et materialia, 1995. 43(2): p. 453-460.
45. A. Suzuki and T. M. Pollock, "High-temperature strength and deformation of [gamma]/[gamma]'two-phase Co-Al-W-base alloys". Acta materialia, 2008. 56(6): p. 1288-1297.
46. U. S. Lindholm and L. M. Yeakley, "Dynamic deformation of single and polycrystalline aluminium+". Journal of the Mechanics and Physics of Solids, 1965. 13(1): p. 41-53.
47. L. Shi and D. Northwood, "The mechanical behavior of an AISI type 310 stainless steel". Acta metallurgica et materialia, 1995. 43(2): p. 453-460.
48. W. S. Lee and C. Y. Liu, "Comparison of dynamic compressive flow behavior of mild and medium steels over wide temperature range". Metallurgical and Materials Transactions A, 2005. 36(11): p. 3175-3186.
49. E. Robert, R. Hill and R. Abbaschian, "Physical metallurgy principles". PWS-Kent, 3Ed, Boston, 1992.
50. R. Ham, "The determination of dislocation densities in thin films". Philosophical Magazine, 1961. 6(69): p. 1183-1184.
51. Y. Tomota, P. Lukas, S. Harjo, J. Park, N. Tsuchida and D. Neov, "In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation". Acta materialia, 2003. 51(3): p. 819-830.
52. A. Varvani-Farahani, "A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions". International Journal of Fatigue, 2000. 22(4): p. 295-305.
53. U. Mühle, U. Martin, H. Oettel and O. Vöhringer, "Microstructure and modelling of the deformation behaviour of CoCr22Ni22W14 in hot-tensile-and creep tests". Materials Science and Engineering: A, 1997. 230(1): p. 81-87.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw