進階搜尋


下載電子全文  
系統識別號 U0026-1307201222072900
論文名稱(中文) 6061鋁合金滾軋板材在不同晶向方位及應變速率下之塑變行為與差排次結構分析
論文名稱(英文) The Influence of crystallographic orientation and strain rate on the plastic deformation and dislocation substructure of a rolled 6061 aluminum alloy plate
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 劉茂宏
研究生(英文) Mao-Hung Liu
學號 n16994691
學位類別 碩士
語文別 中文
論文頁數 105頁
口試委員 指導教授-李偉賢
口試委員-王俊志
口試委員-黃永茂
中文關鍵字 6061鋁合金  晶向方位  塑性變形  應變速率  差排 
英文關鍵字 6061 aluminum alloy  crystallographic orientation  plastic deformation  strain rate  dislocation 
學科別分類
中文摘要 本文主要是探討6061鋁合金滾軋板材在不同晶向方位及應變速率下之塑性變形行為與差排顯微結構的特性。圓柱形的試片方別沿著板材之滾軋方向(Longitudinal)、垂直於板材之滾軋方向(Transverse)及通過板厚之方向(Through-Thickness)切割加工,再經固溶,析出處理(T6)及研磨後,利用壓縮式霍普金森桿高速撞擊試驗機(Hopkinson bar)於室溫,應變速率分別為103s-1,3×103s-1,5×103s-1之條件進行塑性變形測試,以分析晶向方位(Crystallographic orientation)及應變速率對6061-T6鋁合金之塑性特性及差排結構特徵所產生的影響。
實驗結果顯示,6061-T6鋁合金在三個晶向方位之塑流應力隨應變速率與應變量之增加而增加,其加工硬化率則隨應變速率的增加而降低,而應變速率敏感性係數則隨應變速率區間的增加而增加,但隨應變量的提升而降低;熱活化體積則隨著應變速率區間的增加而降低,但隨著應變量的增加而提升。
此外在相同的應變速率下,垂直於板材之滾軋方向(Transverse)有最高的塑流應力值,其次為通過板厚方向(Through-Thickness),但是當應變速率超過3000s-1時,沿滾軋方向(Longitudinal)之應力值則優於通過板厚方向(Through-Thickness)。若在相同應變速率下及應變量下,沿滾軋方向之材料具有最高的加工硬化率,其次為通過板厚方向,最低者為垂直於板材之滾軋方向者。而應變速率敏感性係數之大小,在應變速率低於3000s-1時,則分別為垂直於板材滾軋方向,其次為沿著板材滾軋方向,最後為通過板厚之方向。但是在應變速率高於3000s-1時,應變速率敏感性係數之大小,則反由沿著板材滾軋方向居冠,其次是垂直於板材滾軋方向,最後仍為通過板厚方向的試件,相反的趨勢皆可見於熱活化體積之上。
穿透式電子顯微鏡觀測結果顯示,在三個晶向方位上,插排的密度隨應變速率的上升而上升。當應變速率超過3000s-1時,沿板材滾軋方向之差排增值速率高於通過板厚之方向者。而塑流應力值隨均方根差排密度作線性的增加趨勢,證實了Bailey-Hirsch關係式的存在。
英文摘要 In this study, a spit-Hopkinson bar is utilized to study the effect of crystallographic orientation and strain rate on impact deformation behavior and dislocation substructure of a rolled 6061-T6 aluminum alloy plate at room temperature under strain rates of 103s-1, 3×103s-1 and 5×103s-1. Cylindrical compression specimens are prepared from rolled plate with three different crystallographic orientations, i.e. longitudinal, transverse and through-thickness. All specimens are then solution heat treated at 565℃ for 1.5h and aged at 171℃ for 16h.
It is found that for all the crystallographic orientations, the flow stress increases with increasing strain and strain rate. However the work-hardening rate decreases with increasing strain and strain rate. Furthermore the strain rate sensitivity increases with increasing strain rate, but decreased with increasing strain. An inverse trendy exists for the activation volume.
In addition, for a given strain rate, the transverse specimen has the highest flow stress, followed by the through-thickness specimen. However, as the strain rate is higher than 3000s-1, the flow stress of longitudinal specimen is superior to that of through-thickness specimen. Furthermore, at the same strain and strain rate level, the work hardening rate of the longitudinal specimen is higher than that of through-thickness specimen or transverse specimen. It is also found that the transverse specimen is more sensitive to strain rate than longitudinal when strain rate is under 3000s-1, but the longitudinal specimen will be more sensitive than transverse when strain rate is over 3000 s-1, An inverse tendency is also found for the activation volume will have contrary to the strain rate sensitivity rate trend.
Transmission electron microscope(TEM) observations show that the dislocation density increases with an increasing strain rate for all three crystallographic orientations. As the strain rate greater than 3x103s-1, the dislocation multiplication rate for longitudinal specimen is higher than that for through-thickness specimen. The linear correlation between the square root of the dislocation density and the true stress confirms the existence of a Bailey-Hirsch type relationship.
論文目次 中文摘要 I
ABSTRACT II
致謝 III
總目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XIII
第一章 前言 1
第二章 理論與文獻回顧 3
2-1鋁合金之簡介 3
2-1-1鋁合金之分類 3
2-1-2鋁合金之析出強化 3
2-2 6061鋁合金介紹 4
2-2-1鋁合金的熱處理方式 5
2-2-2鋁合金之強化 5
2-3塑性變形之機械測試類別 6
2-4霍普金森撞擊試驗機 7
2-4-1霍普金森撞擊試驗機發展歷史 8
2-4-2一維波傳理論 9
2-4-3霍普金森撞擊試驗機之理論基礎 11
2-4-4波散效應─霍普金森撞擊試驗機的先天障礙 13
2-5材料塑性變形行為 16
2-5-1恆溫機構 18
2-5-2熱活化機制 18
2-5-3差排黏滯機制 19
2-6變形組構方程式 20
2-6-1Ludwick方程式[45, 58] 20
2-6-2Sokolosky(1948) & Malvern(1951)模式 21
2-6-3Zerilli-Armstrong方程式[59-61] 21
2-6-4Johnson-Cook方程式[62] 22
第三章 實驗方法及步驟 31
3-1實驗流程 31
3-2實驗儀器與設備 31
3-2-1動態機械性質測試系統:霍普金森撞擊試驗機 31
3-2-2光學顯微鏡 33
3-2-3穿透式電子顯微鏡 33
3-2-4雙噴式電解拋光機 33
3-2-5低速切割機 34
3-3實驗步驟 34
3-3-1實驗試件製備 34
3-3-2動態衝擊實驗 34
3-3-3試件金相之觀察(OM) 35
3-3-4 TEM試片製備 35
第四章 實驗結果與討論 39
4-1應力-應變曲線 39
4-2加工硬化率 40
4-3應變速率效應 42
4-4熱活化體積 43
4-5理論溫升量 45
4-6材料組構方程式 46
4-7 OM金相組織觀察 47
4-8 TEM微觀結構分析 48
第五章 結論 94
參考文獻 97
參考文獻 1.E. Starke and A. Csontos, "Aluminum Alloys–Their Physical and Mechanical Properties (ICAA-6)". 1998, The Japan Institute of Light Metals, Tokyo.
2.J. T. Staley and D. J. Lege, "Advances in aluminium alloy products for structural applications in transportation". Le Journal de Physique IV, 1993. 3(C7): p. 7-7.
3.A. Morita, "Aluminum Alloys–Their Physical and Mechanical Properties (ICAA-6)". 1998, The Japan Institute of Light Metals, Tokyo.
4.N. P. Wasekar, N. Ravi, P. Suresh Babu, L. Rama Krishna and G. Sundararajan, "High-Cycle Fatigue Behavior of Microarc Oxidation Coatings Deposited on a 6061-T6 Al Alloy". Metallurgical and Materials Transactions A, 2010. 41(1): p. 255-265.
5.W. S. Lee and T. H. Chen, "Rate-dependent deformation and dislocation substructure of Al–Sc alloy". Scripta materialia, 2006. 54(8): p. 1463-1468.
6.L. Yongning, Z. Jinhau and Z. Huijiu, "The plastic deformation of an alpha -Ti alloy and its thermal activation process vs effective stress". Metallurgical and Materials Transactions A, 1992. 23(1): p. 335-340.
7.Y. B. Xu, W. L. Zhong, Y. J. Chen, L. T. Shen, Q. Liu, Y. L. Bai and M. A. Meyers, "Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy". Materials Science and Engineering: A, 2001. 299(1): p. 287-295.
8.W. S. Lee and C. Y. Liu, "The effects of temperature and strain rate on the dynamic flow behaviour of different steels". Materials Science and Engineering: A, 2006. 426(1): p. 101-113.
9.A. S. Khan, R. Kazmi and B. Farrokh, "Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain rates and temperatures". International journal of plasticity, 2007. 23(6): p. 931-950.
10.W. S. Lee and T. H. Chen, "Mechanical and microstructural response of aluminum-scandium (Al-Sc) alloy as a function of strain rate and temperature". Materials Chemistry and Physics, 2009. 113(2-3): p. 734-745.
11.Q. Li, Y. B. Xu and M. N. Bassim, "Dynamic mechanical behavior of pure titanium". Journal of Materials Processing Technology, 2004. 155–156(0): p. 1889-1892.
12.W. S. Lee, C. F. Lin, C. Y. Liu and C. W. Cheng, "Effects of strain rate and welding current mode on microstructural properties of SUS 304L PAW welds". Journal of Materials Processing Technology, 2007. 183(2): p. 183-193.
13.K. P. Staudhammer and L. E. Murr, "The effect of prior deformation on the residual microstructure of explosively deformed stainless steels". Materials Science and Engineering, 1980. 44(1): p. 97-113.
14.G. Regazzoni, U. F. Kocks and P. S. Follansbee, "Dislocation kinetics at high strain rates". Acta metallurgica, 1987. 35(12): p. 2865-2875.
15.F. J. Zerilli and R. W. Armstrong, "The effect of dislocation drag on the stress-strain behavior of FCC metals". Acta Metallurgica et Materialia, 1992. 40(8): p. 1803-1808.
16.A. Salem, "The Influence of Initial Texture and Deformation Temperature on the Strain Hardening Response of Alpha-Titanium". 2004.
17.S. I. Wright, G. T. Gray and A. D. Rollett, "Textural and microstructural gradient effects on the mechanical behavior of a tantalum plate". Metallurgical and Materials Transactions A, 1994. 25(5): p. 1025-1031.
18.P. Thamburaja, H. Pan and F. S. Chau, "Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti–Ni sheet". Acta materialia, 2005. 53(14): p. 3821-3831.
19.R. R. Adharapurapu, F. Jiang, K. S. Vecchio and G. T. Gray III, "Response of NiTi shape memory alloy at high strain rate: A systematic investigation of temperature effects on tension–compression asymmetry". Acta materialia, 2006. 54(17): p. 4609-4620.
20.R. L. Woodward, "The interrelation of failure modes observed in the penetration of metallic targets". International Journal of Impact Engineering, 1984. 2(2): p. 121-129.
21.Y. Tomota, P. Lukas, S. Harjo, J. H. Park, N. Tsuchida and D. Neov, "In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation". Acta materialia, 2003. 51(3): p. 819-830.
22.S. C. Bergsma, M. E. Kassner, X. Li and M. A. Wall, "Strengthening in the new aluminum alloy AA 6069". Materials Science and Engineering: A, 1998. 254(1): p. 112-118.
23.R. Braun, "Effect of thermal exposure on the microstructure, tensile properties and the corrosion behaviour of 6061 aluminium alloy sheet". Materials and Corrosion, 2005. 56(3): p. 159-165.
24.R. R. Ambriz, G. Barrera, R. Garcia and V. H. Lopez, "A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA)". Materials & Design, 2009. 30(7): p. 2446-2453.
25.F. J. MacMaster, K. S. Chan, S. C. Bergsma and M. E. Kassner, "Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6". Materials Science and Engineering: A, 2000. 289(1): p. 54-59.
26.G. M. Dominguez Almaraz, V. H. Mercado Lemus and J. Jesús Villalon Lopez, "Rotating bending fatigue tests for aluminum alloy 6061-T6, close to elastic limit and with artificial pitting holes". Procedia Engineering, 2010. 2(1): p. 805-813.
27.J. C. Huang, C. S. Shin and S. L. I. Chan, "Effect of temper, specimen orientation and test temperature on tensile and fatigue properties of wrought and PM AA6061-alloys". International Journal of Fatigue, 2004. 26(7): p. 691-703.
28."鎂合金在汽車產業之創新應用". in 輕金屬先進技術發展與應用國際研討會. 2003: 金屬中心.
29.D. J. Chakrabarti and D. E. Laughlin, "Phase relations and precipitation in Al–Mg–Si alloys with Cu additions". Progress in Materials Science, 2004. 49(3): p. 389-410.
30.I. Dutta and S. M. Allen, "A calorimetric study of precipitation in commercial aluminium alloy 6061". Journal of materials science letters, 1991. 10(6): p. 323-326.
31.M. Murayama and K. Hono, "Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys". Acta materialia, 1999. 47(5): p. 1537-1548.
32.S. J. Andersen, H. W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal and O. Reiso, "The crystal structure of the [beta]'phase in Al-Mg-Si alloys". Acta materialia, 1998. 46(9): p. 3283-3298.
33.M. H. Jacobs, "The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy". Philosophical Magazine, 1972. 26(1): p. 1-13.
34.Y. Ohmori, L. C. Doan, Y. Matsuura, S. Kobayashi and K. Nakai, "Morphology and crystallography of β-Mg2Si precipitation in Al-Mg-Si alloys". Materials transactions-JIM, 2001. 42(12): p. 2576-2583.
35.M. A. Meyers and L. E. Murr, "Shock waves and high-strain-rate phenomena in metals". Vol. 487. 1981: Plenum Press.
36.ASM, "Introduction to High Strain Rate Testing". Mechanical Testing and Evaluation. Vol. 8. 2000: ASM International.
37.B. Hopkinson, "A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets". Proceedings of the Royal Society of London. Series A, 1914. 89(612): p. 411-413.
38.R. M. Davies, "A critical study of the Hopkinson pressure bar". Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948: p. 375-457.
39.H. Kolsky, "An investigation of the mechanical properties of materials at very high rates of loading". Proceedings of the Physical Society. Section B, 1949. 62: p. 676.
40.F. E. Hauser, J. A. Simmons and J. E. Dorn, "Strain rate effects in plastic wave propagation". Response of metals to high velocity deformation, 1961: p. 93-114.
41.J. Harding, E. O. Wood and J. D. Campbell, "Tensile testing of materials at impact rates of strain". Journal of Mechanical Engineering Science, 1960. 2(2): p. 88-96.
42.T. Nicholas, "Dynamic tensile testing of structural materials using a split Hopkinson bar apparatus". 1980, DTIC Document.
43.U. S. Lindholm and L. M. Yeakley, "High strain-rate testing: tension and compression". Experimental Mechanics, 1968. 8(1): p. 1-9.
44.M. A. Meyers, "Dynamic behavior of materials". 1994: Wiley-Interscience.
45.Y. Bai and B. Dodd, "Adiabatic shear localization: occurrence, theories and applications". Vol. 2. 1992: Pergamon Press Oxford,, UK.
46.K. F. Graff, "Wave motion in elastic solids". 1975: Dover Pubns.
47.W. S. Lee and C. F. Lin, "Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures". Materials Science and Engineering: A, 1998. 241(1): p. 48-59.
48.J. W. Dally and W. F. Riley, "Experimental Stress Analysis". 1991, McGraw-Hill, New York.
49.K. Oi, "Transient response of bonded strain gages". Experimental Mechanics, 1966. 6(9): p. 463-469.
50.J. D. Campbell, "Dynamic plasticity: macroscopic and microscopic aspects". Materials Science and Engineering, 1973. 12(1): p. 3-21.
51.D. Klahn, A. K. Mukherjee and J. E. Dorn, "Proceedings of the 2nd International Conference on the Strength of Metals and Alloys". Vol. III, ASM, 1970: p. 951.
52.J. D. Campbell and A. R. Dowling, "The behaviour of materials subjected to dynamic incremental shear loading". Journal of the Mechanics and Physics of Solids, 1970. 18(1): p. 43-63.
53.A. Seeger, "Dislocation and Mechanical Properties of Crystals". Philosophical magazine, 1955. 46: p. 1194-1217.
54.H. Conrad, "Thermally activated deformation of metals". JOM, 1964. 16(7): p. 582-588.
55.M. A. Meyers, D. J. Benson, O. Vöhringer, B. K. Kad, Q. Xue and H. H. Fu, "Constitutive description of dynamic deformation: physically-based mechanisms". Materials Science and Engineering: A, 2002. 322(1): p. 194-216.
56.W. G. Ferguson, A. Kumar and J. E. Dorn, "Dislocation damping in aluminum at high strain rates". Journal of Applied Physics, 1967. 38(4): p. 1863-1869.
57.U. S. Lindholm and L. M. Yeakley, "Dynamic deformation of single and polycrystalline aluminium+". Journal of the Mechanics and Physics of Solids, 1965. 13(1): p. 41-53.
58.Z. Gronostajski, "The constitutive equations for FEM analysis". Journal of Materials Processing Technology, 2000. 106(1): p. 40-44.
59.L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, "A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study". Journal of Materials Processing Technology, 2007. 182(1): p. 319-326.
60.F. J. Zerilli and R. W. Armstrong, "Dislocation‐mechanics‐based constitutive relations for material dynamics calculations". Journal of Applied Physics, 1987. 61(5): p. 1816-1825.
61.F. J. Zerilli and R. W. Armstrong, "Constitutive equation for hcp metals and high strength alloy steels". High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials, 1995: p. 121-126.
62.G. R. Johnson and W. H. Cook. "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures". 1983: The Hague, Netherlands: International Ballistics Committee.
63."Understanding Extruded Aluminum Alloys". 2012, Alcoa Engineered: Cressona, Pennsylvania.
64.D. R. Curran, L. Seaman and D. A. Shockey, "Linking dynamic fracture to microstructural processes". Shock waves and high-strain-rate phenomena in metals, 1981: p. 129-167.
65.U. S. Lindholm, "High strain rate tests". Techniques of metals research, 1971. 5(Part 1): p. 199.
66.W. S. Lee and T. H. Chen, "Dynamic Deformation Behaviour and Microstructural Evolution of High-Strength Weldable Aluminum Scandium (Al-Sc) Alloy". Materials Transactions, 2008. 49(6): p. 1284-1293.
67.S. Esmaeili, L. M. Cheng, A. Deschamps, D. J. Lloyd and W. J. Poole, "The deformation behaviour of AA6111 as a function of temperature and precipitation state". Materials Science and Engineering: A, 2001. 319: p. 461-465.
68.B. Viguier, "Dislocation densities and strain hardening rate in some intermetallic compounds". Materials Science and Engineering: A, 2003. 349(1): p. 132-135.
69.D. Chu and J. W. Morris, "The influence of microstructure on work hardening in aluminum". Acta materialia, 1996. 44(7): p. 2599-2610.
70.J. Harding, "Effect of temperature and strain rate on strength and ductility of four alloy steels". Metals Technology, 1977. 4: p. 6-16.
71.J. D. Campbell and W. G. Ferguson, "The temperature and strain-rate dependence of the shear strength of mild steel". Philosophical Magazine, 1970. 21(169): p. 63-82.
72.L. Shi and D. O. Northwood, "The mechanical behavior of an AISI type 310 stainless steel". Acta Metallurgica et Materialia, 1995. 43(2): p. 453-460.
73.J. M. Holt, H. Mindlin and C. Y. Ho, "Structural alloys handbook". 1994: CINDAS/Purdue University.
74.R. Nandan, "Computational modeling of heat transfer and visco-plastic flow in friction stir welding". 2008: ProQuest.
75.E. Marquardt, J. Le and R. Radebaugh, "Cryogenic material properties database". Cryocoolers 11, 2002: p. 681-687.
76.M. Cabibbo, E. Evangelista and M. Vedani, "Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy". Metallurgical and Materials Transactions A, 2005. 36(5): p. 1353-1364.
77.A. Lise Dons, "The Alstruc homogenization model for industrial aluminum alloys". Journal of Light Metals, 2001. 1(2): p. 133-149.
78.A. K. Gupta and D. J. Lloyd, "Precipitation hardening in Al–Mg–Si alloys with and without excess Si". Materials Science and Engineering: A, 2001. 316(1): p. 11-17.
79.A. K. Gupta, P. H. Marois and D. J. Lloyd. "Confirming Computer Calculations of Phase Stability with the Experimental Observations in Automotive Alloy AA6111". 2006: Trans Tech Publ.
80.W. S. Lee, T. H. Chen, C. F. Lin and N. W. Lee, "High strain rate shear deformation and fracture behaviour of biomedical titanium alloy". Materials Science and Technology, 2010. 26(9): p. 1079-1087.
81.R. K. Ham, "The determination of dislocation densities in thin films". Philosophical Magazine, 1961. 6(69): p. 1183-1184.
82.J. E. Bailey and P. B. Hirsch, "The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver". Philosophical Magazine, 1960. 5(53): p. 485-497.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw