進階搜尋


下載電子全文  
系統識別號 U0026-1307201114564500
論文名稱(中文) 子宮頸癌的上皮-間質轉換過程
論文名稱(英文) Epithelial-Mesenchymal Transition in Cervical Cancer
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 李美逸
研究生(英文) Mei-Yi Lee
學號 S5894133
學位類別 博士
語文別 英文
論文頁數 132頁
口試委員 指導教授-沈孟儒
口試委員-湯銘哲
召集委員-張玲
口試委員-張俊彥
口試委員-陳鴻震
中文關鍵字 子宮頸癌  上皮-間質細胞轉換過程  Snail轉錄因子 
英文關鍵字 Cervical cancer  epithelial-mesenchymal transition(EMT)  Snail 
學科別分類
中文摘要 上皮-間質細胞轉換過程(epithelial-mesenchymal transition)為一個調控上皮細胞可塑性的重要機制,伴隨在許多種惡性腫瘤轉移進程中。本博士論文研究則是去探討上皮-間質細胞轉換過程與子宮頸癌惡性進程之臨床相關性,及探討其中所參與的新穎訊息調控機轉。本論文架構包含三個部分。(一) Snail轉錄因子的過量入核表現參與在上皮生長因子所調控的上皮-間質細胞轉換過程。將上皮生長因子EGF慢性刺激群聚生長的子宮頸癌細胞,會導致細胞型態延長、分離散佈,且增加細胞侵犯性。此訊息傳遞是透過去活化GSK-3beta,穩定Snail轉錄因子蛋白質於細胞核的表現,導致上皮-間質細胞轉變過程。以免疫螢光染色實驗檢驗子宮頸癌組織,證實上皮標誌E-cadherin隨著轉移癌組織表現逐漸下降,而間質標誌vimentin表現逐漸增加,此過程伴隨著上皮細胞生長因子受體過度表現,以及Snail轉錄因子表現增加且聚集在細胞核。建立Snail轉錄因子過量表現的癌細胞,其細胞分散程度與侵犯能力增加。利用雷射顯微切割技術加上即時定量系統,發現與無淋巴轉移病人相比,腹腔淋巴轉移病人原位癌細胞的Snail轉錄因子表現量增加。總結研究顯示:Snail轉錄因子的過量表現會增加癌細胞的侵蝕與轉移能力。(二) 纖維連結蛋白fibronectin與細胞外基質結合受體 alpha5beta1 integrin可調節上皮生長因子所調控的上皮-間質細胞轉換過程。使用不同種integrin功能拮抗性抗體與細胞外基質,發現纖維連結蛋白與基質結合受體alpha5beta1 integrin透過調節Snail轉錄因子細胞核內過量表現,而增強上皮生長因子所誘導的子宮頸癌細胞上皮-間質細胞轉變過程。(三) 探討蛋白激酶PKC-delta 與Snail轉錄因子的相互調控以及上皮生長因子所誘導的上皮-間質細胞轉換過程之影響。此研究著重探討是否PKC-delta可能參與調控子宮頸癌的上皮-間質細胞轉換過程。組織免疫螢光染色顯示,細胞核PKC-delta表現與共存的少量E-cadherin表現存在於部分癌腫瘤組織的中央區域;檢驗同源病人的正常與癌組織蛋白量,發現PKC-delta和Snail轉錄因子的過量表現有正相關趨勢。抑制或促進PKC-delta的活性或是抑制PKC-delta的表現,皆會影響子宮頸癌細胞內源性的Snail表現量。以上皮生長因子來慢性誘導子宮頸癌細胞進行上皮-間質細胞轉換過程,酪酸根磷酸化態PKC-delta出現在訊息傳遞時程早期,且分布在細胞質特定區域;但抑制PKC-delta的表現不會反轉上皮生長因子所誘導的上皮-間質細胞轉換的分子蛋白表現。總結本研究發現,此結果顯示PKC-delta可能與上皮-間質細胞轉換過程相關,仍須進一步釐清。總結以上結果,本論文提供上皮-間質細胞轉換過程的臨床重要性,以及上皮生長因子EGF、基質結合受體alpha5beta1 integrin、以及蛋白激酶PKC-delta的扮演角色,顯示Snail轉錄因子在子宮頸癌細胞的侵襲能力有重大影響。提供臨床與基礎研究證據支持Snail轉錄因子於未來應用於臨床癌症的診斷與治療。
英文摘要 Epithelial-mesenchymal transition (EMT) is one of the mechanisms controlling epithelial plasticity and involved in the cancer malignant progression. Snail is important transcription repressor for E-cadherin expression. My thesis focuses on the clinical relevance of epithelial-mesenchymal transition and the identification of novel regulatory signaling mechanisms in the stepwise progression of cervical carcinoma. There are three parts included in my thesis. (1) Up-regulation of Snail is involved in EGF-mediated mesenchymal transition of cervical cancer. This part of study aims to investigate the effects of EGF on the EMT program of cervical cancer cells. The results indicate that EMT program is associated with the malignant cancer progression with concomitant EGFR overexpression, E-cadherin downregulation, vimentin and Snail upregulation. Chronic stimulation of EGF in cervical cancer cells can initiate EMT program through upregulation of Snail transcription factor. Our results suggest that Snail overexpression is important for cell plasticity, cell invasiveness, and distant metastasis. (2) alpha5beta1 integrin and fibronectin modulate EGF-mediated EMT. Using various functional blocking integrin antibodies and ECM coating conditions, we identified that alpha5beta1 integrin and its extracellular matrix fibronectin can augment EGF-mediated mesenchymal transition through modulation of nuclear Snail protein accumulation in cervical carcinoma cells. (3) Characterization of the role of PKC-delta in the regulation of Snail and EGF-mediated EMT. Here, I test the involvement of PKC-delta in the regulation of EMT in cervical cancer. Immunofluorescent staining shows an association between nuclear PKC-delta accumulation and E-cadherin loss in the central tumor mass in some cases of cancer tissue. In addition, there is an association of concurrent overexpression of PKC-delta and Snail in matched cancer tissue and cultured cervical cancer cells, suggesting PKC-delta and Snail are in the same signaling axis. Upon chronic EGF stimulation, tyrosine-311 phosphorylated PKC-delta occurs in prior to GSK-3beta inactivation and Snail upregulation. However, depletion of PKC-delta expression by siRNA does not alleviate EGF-mediated EMT-related molecular changes. In conclusion, this thesis provides a new insight into the important regulatory signal related to Snail transcription factor in the mesenchymal transition of cervical carcinoma.
論文目次 Abstract-----------------------------------------------------------------------------------------------02
中文摘要----------------------------------------------------------------------------------------------03
誌謝----------------------------------------------------------------------------------------------------04
Abbreviations-----------------------------------------------------------------------------------------06
Chapter 1. Introduction-----------------------------------------------------------------------------07
1.1 Cervical cancer---------------------------------------------------------------------------------08
1.2 Epithelial-mesenchymal transition (EMT)--------------------------------------------------09
A. Epithelial-mesenchymal transition (EMT)---------------------------------------------------09
B. Molecular basis of EMT-------------------------------------------------------------------------11
C. EMT-related signaling pathways in cervical cancer--------------------------------------13
1.3 Regulations of Snail transcription factor---------------------------------------------------18
A. Domain structure of Snail protein------------------------------------------------------------18
B. Biological characteristics of Snail------------------------------------------------------------19
C. Transcriptional regulation by Snail-----------------------------------------------------------20
D. Downstream targets of Snail transcription factor-----------------------------------------20
E. Mechanisms controlling Snail expression--------------------------------------------------21
1.4 Emerging roles of PKC-delta in epithelial cell scattering-------------------------------23
A. The PKC family-----------------------------------------------------------------------------------23
B. PKC-delta------------------------------------------------------------------------------------------24
C. Emerging roles of PKC-delta on cell migration and epithelial cell scattering----------------------------------------------------------------------------------------------------------------------26
1.5 Objectives of my study-------------------------------------------------------------------------27
Chapter 2. Up-regulation of Snail is involved in EGF-mediated mesenchymal transition of cervical cancer------------------------------------------------------------------------------------29
Chapter 3. alpha5beta1 integrin and fibronectin modulates EGF-mediated EMT--------------------------------------------------------------------------------------------------------------------64
Chapter 4. Characterization of the role of PKC-delta in the regulation of Snail and EGF-mediated EMT---------------------------------------------------------------------------------------82
Chapter 5. Conclusions and prospect---------------------------------------------------------108
References------------------------------------------------------------------------------------------120
參考文獻 Aplin JD, Dawson S, Seif MW (1996) Abnormal expression of integrin alpha 6 beta 4 in cervical intraepithelial neoplasia. BrJ Cancer 74: 240-245

Ayyanathan K, Peng H, Hou Z, Fredericks WJ, Goyal RK, Langer EM, Longmore GD, Rauscher FJ, 3rd (2007) The Ajuba LIM domain protein is a corepressor for SNAG domain mediated repression and participates in nucleocytoplasmic Shuttling. Cancer Res 67: 9097-9106

Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM (2005) Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 168: 29-33

Baritaki S, Chapman A, Yeung K, Spandidos DA, Palladino M, Bonavida B (2009) Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor, NPI-0052: pivotal roles of Snail repression and RKIP induction. Oncogene 28: 3573-3585

Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151-3161

Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84-89

Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL (2001) Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 276: 46707-46713

Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499-511

Brodie C, Blumberg PM (2003) Regulation of cell apoptosis by protein kinase c delta. Apoptosis 8: 19-27

Cabodi S, Moro L, Bergatto E, Boeri Erba E, Di Stefano P, Turco E, Tarone G, Defilippi P (2004) Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem Soc Trans 32: 438-442

Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76-83

Carver EA, Jiang R, Lan Y, Oram KF, Gridley T (2001) The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 21: 8184-8188

Chen CL, Chan PC, Wang SH, Pan YR, Chen HC (2010) Elevated expression of protein kinase C delta induces cell scattering upon serum deprivation. J Cell Sci 123: 2901-2913

Chen CL, Chen HC (2009) Functional suppression of E-cadherin by protein kinase Cdelta. J Cell Sci 122: 513-523

Chung MT, Lai HC, Sytwu HK, Yan MD, Shih YL, Chang CC, Yu MH, Liu HS, Chu DW, Lin YW (2009) SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol 112: 646-653

D'Costa AM, Robinson JK, Maududi T, Chaturvedi V, Nickoloff BJ, Denning MF (2006) The proapoptotic tumor suppressor protein kinase C-delta is lost in human squamous cell carcinomas. Oncogene 25: 378-386

de Herreros AG, Peiro S, Nassour M, Savagner P (2010) Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 15: 135-147

di Giacomo V, Rapino M, Sancilio S, Patruno A, Zara S, Di Pietro R, Cataldi A (2010) PKC-delta signalling pathway is involved in H9c2 cells differentiation. Differentiation 80: 204-212

Dominguez D, Montserrat-Sentis B, Virgos-Soler A, Guaita S, Grueso J, Porta M, Puig I, Baulida J, Franci C, Garcia de Herreros A (2003) Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol 23: 5078-5089

Du C, Zhang C, Hassan S, Biswas MH, Balaji KC (2010) Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res 70: 7810-7819

Edick MJ, Tesfay L, Lamb LE, Knudsen BS, Miranti CK (2007) Inhibition of integrin-mediated crosstalk with epidermal growth factor receptor/Erk or Src signaling pathways in autophagic prostate epithelial cells induces caspase-independent death. Mol Biol Cell 18: 2481-2490

Emadi Baygi M, Soheili ZS, Schmitz I, Sameie S, Schulz WA (2010) Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol 26: 553-567

Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D, Sorokin A, Ovchinnikov LP, Davicioni E, Triche TJ, Sorensen PH (2009) Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 15: 402-415

Franco DL, Mainez J, Vega S, Sancho P, Murillo MM, de Frutos CA, Del Castillo G, Lopez-Blau C, Fabregat I, Nieto MA (2010) Snail1 suppresses TGF-beta-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J Cell Sci 123: 3467-3477

Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y (2010) Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene 29: 4947-4958

Geiger T, Sabanay H, Kravchenko-Balasha N, Geiger B, Levitzki A (2008) Anomalous features of EMT during keratinocyte transformation. PLoS One 3: e1574

Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129: 1375-1383

Goppinger A, Wittmaack FM, Wintzer HO, Ikenberg H, Bauknecht T (1989) Localization of human epidermal growth factor receptor in cervical intraepithelial neoplasias. J Can Res Clin Oncol 115: 259-263

Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7: 281-294

Grossoni VC, Falbo KB, Kazanietz MG, de Kier Joffe ED, Urtreger AJ (2007) Protein kinase C delta enhances proliferation and survival of murine mammary cells. Mol Carcinog 46: 381-390

Grotegut S, von Schweinitz D, Christofori G, Lehembre F (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25: 3534-3545

Hagemann T, Bozanovic T, Hooper S, Ljubic A, Slettenaar VI, Wilson JL, Singh N, Gayther SA, Shepherd JH, Van Trappen PO (2007) Molecular profiling of cervical cancer progression. Brit J Can 96: 321-328

He H, Davidson AJ, Wu D, Marshall FF, Chung LW, Zhau HE, He D, Wang R (2010) Phorbol ester phorbol-12-myristate-13-acetate induces epithelial to mesenchymal transition in human prostate cancer ARCaPE cells. Prostate 70: 1119-1126

Hellner K, Mar J, Fang F, Quackenbush J, Munger K (2009) HPV16 E7 oncogene expression in normal human epithelial cells causes molecular changes indicative of an epithelial to mesenchymal transition. Virology 391: 57-63

Hennig G, Behrens J, Truss M, Frisch S, Reichmann E, Birchmeier W (1995) Progression of carcinoma cells is associated with alterations in chromatin structure and factor binding at the E-cadherin promoter in vivo. Oncogene 11: 475-484

Herranz N, Pasini D, Diaz VM, Franci C, Gutierrez A, Dave N, Escriva M, Hernandez-Munoz I, Di Croce L, Helin K, Garcia de Herreros A, Peiro S (2008) Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 28: 4772-4781

Hou Z, Peng H, White DE, Wang P, Lieberman PM, Halazonetis T, Rauscher FJ, 3rd (2010) 14-3-3 binding sites in the snail protein are essential for snail-mediated transcriptional repression and epithelial-mesenchymal differentiation. Cancer Res 70: 4385-4393

Hsu DS, Lan HY, Huang CH, Tai SK, Chang SY, Tsai TL, Chang CC, Tzeng CH, Wu KJ, Kao JY, Yang MH (2010) Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer. Clin Cancer Res 16: 4561-4571

Hsu YM, Chen YF, Chou CY, Tang MJ, Chen JH, Wilkins RJ, Ellory JC, Shen MR (2007) KCl cotransporter-3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition. Cancer Res 67: 11064-11073

Hu CT, Chang TY, Cheng CC, Liu CS, Wu JR, Li MC, Wu WS (2010) Snail associates with EGR-1 and SP-1 to upregulate transcriptional activation of p15INK4b. FEBS J 277: 1202-1218

Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548-558

Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119: 3901-3903

Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116: 1959-1967

Iwabu A, Smith K, Allen FD, Lauffenburger DA, Wells A (2004) Epidermal growth factor induces fibroblast contractility and motility via a protein kinase C delta-dependent pathway. J Biol Chem 279: 14551-14560

Janes SM, Watt FM (2006) New roles for integrins in squamous-cell carcinoma. Nat Rev Cancer 6: 175-183

Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T (1998) The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 198: 277-285

Johansson S, Svineng G, Wennerberg K, Armulik A, Lohikangas L (1997) Fibronectin-integrin interactions. Front Biosci 2: d126-146

Kajimoto T, Shirai Y, Sakai N, Yamamoto T, Matsuzaki H, Kikkawa U, Saito N (2004) Ceramide-induced apoptosis by translocation, phosphorylation, and activation of protein kinase Cdelta in the Golgi complex. J Biol Chem 279: 12668-12676

Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420-1428

Kao YC, Wu LW, Shi CS, Chu CH, Huang CW, Kuo CP, Sheu HM, Shi GY, Wu HL (2010) Downregulation of thrombomodulin, a novel target of Snail, induces tumorigenesis through epithelial-mesenchymal transition. Mol Cell Biol 30: 4767-4785

Kharait S, Dhir R, Lauffenburger D, Wells A (2006) Protein kinase Cdelta signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells. Biochem Biophys Res Commun 343: 848-856

Kikkawa U, Matsuzaki H, Yamamoto T (2002) Protein kinase C delta (PKC delta): activation mechanisms and functions. J Biochem 132: 831-839

Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15: 195-206

Kuphal S, Bauer R, Bosserhoff AK (2005) Integrin signaling in malignant melanoma. Cancer Metastasis Rev 24: 195-222

Kuwada SK, Li X (2000) Integrin alpha5/beta1 mediates fibronectin-dependent epithelial cell proliferation through epidermal growth factor receptor activation. Mol Biol Cell 11: 2485-2496

Kwon MJ, Yao Y, Walter MJ, Holtzman MJ, Chang CH (2007) Role of PKCdelta in IFN-gamma-inducible CIITA gene expression. Mol Immunol 44: 2841-2849

Lan L, Han H, Zuo H, Chen Z, Du Y, Zhao W, Gu J, Zhang Z (2010) Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. Int J Cancer 126: 53-64

Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 24: 7443-7454

Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172: 973-981

Lee MY, Chou CY, Tang MJ, Shen MR (2008) Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation. Clin Cancer Res 14: 4743-4750

Li J, Zhou BP (2011) Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer 11: 49

Li Z, Jimenez SA (2011) Protein kinase C delta and the c-Abl kinase are required for transforming growth factor-beta induction of endothelial-mesenchymal transition in vitro. Arthritis Rheum [Epub ahead of print]

Liao CJ, Wu TI, Huang YH, Chang TC, Wang CS, Tsai MM, Hsu CY, Tsai MH, Lai CH, Lin KH (2011) Overexpression of gelsolin in human cervical carcinoma and its clinicopathological significance. Gynecol Oncol 120: 135-144

Liu CY, Chao TK, Su PH, Lee HY, Shih YL, Su HY, Chu TY, Yu MH, Lin YW, Lai HC (2009) Characterization of LMX-1A as a metastasis suppressor in cervical cancer. J Pathol 219: 222-231

Liu YN, Lee WW, Wang CY, Chao TH, Chen Y, Chen JH (2005) Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene 24: 8277-8290

MacPherson MR, Molina P, Souchelnytskyi S, Wernstedt C, Martin-Perez J, Portillo F, Cano A (2010) Phosphorylation of serine 11 and serine 92 as new positive regulators of human Snail1 function: potential involvement of casein kinase-2 and the cAMP-activated kinase protein kinase A. Mol Biol Cell 21: 244-253

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704-715

Martin TA, Goyal A, Watkins G, Jiang WG (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12: 488-496

Mauhin V, Lutz Y, Dennefeld C, Alberga A (1993) Definition of the DNA-binding site repertoire for the Drosophila transcription factor SNAIL. Nucleic Acids Res 21: 3951-3957

Mauro LV, Grossoni VC, Urtreger AJ, Yang C, Colombo LL, Morandi A, Pallotta MG, Kazanietz MG, Bal de Kier Joffe ED, Puricelli LL (2010) PKC Delta (PKCdelta) promotes tumoral progression of human ductal pancreatic cancer. Pancreas 39: e31-41

McCracken MA, Miraglia LJ, McKay RA, Strobl JS (2003) Protein kinase C delta is a prosurvival factor in human breast tumor cell lines. Mol Cancer Ther 2: 273-281

Micalizzi DS, Christensen KL, Jedlicka P, Coletta RD, Baron AE, Harrell JC, Horwitz KB, Billheimer D, Heichman KA, Welm AL, Schiemann WP, Ford HL (2009) The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J Clin Invest 119: 2678-2690

Mimeault M, Batra SK (2007) Interplay of distinct growth factors during epithelial mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Ann Oncol 18: 1605-1619

Mingot JM, Vega S, Maestro B, Sanz JM, Nieto MA (2009) Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors. J Cell Sci 122: 1452-1460

Mitra A, Chakrabarti J, Banerji A, Chatterjee A (2004) Binding of alpha2 monoclonal antibody to human cervical tumor cell (SiHa) surface alpha2beta1 integrin modulates MMP-2 activity. Gynecol Oncol 94: 33-39

Mitra A, Chakrabarti J, Banerji A, Das S, Chatterjee A (2006) Culture of human cervical cancer cells, SiHa, in the presence of fibronectin activates MMP-2. J Cancer Res Clin Oncol 132: 505-513

Morello V, Cabodi S, Sigismund S, Camacho-Leal MP, Repetto D, Volante M, Papotti M, Turco E, Defilippi P (2011) beta1 integrin controls EGFR signaling and tumorigenic properties of lung cancer cells. Oncogene [Epub ahead of print]

Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S, Bolos V, Jorda M, Fabra A, Portillo F, Palacios J, Cano A (2006) Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res 66: 9543-9556

Newton AC (2001) Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 101: 2353-2364

Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155-166

Novotny-Diermayr V, Zhang T, Gu L, Cao X (2002) Protein kinase C delta associates with the interleukin-6 receptor subunit glycoprotein (gp) 130 via Stat3 and enhances Stat3-gp130 interaction. J Biol Chem 277: 49134-49142

Ohji M, SundarRaj N, Thoft RA (1993) Transforming growth factor-beta stimulates collagen and fibronectin synthesis by human corneal stromal fibroblasts in vitro. Curr Eye Res 12: 703-709

Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24: 306-319

Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F (2005) A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24: 3446-3458

Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415-428

Porta-de-la-Riva M, Stanisavljevic J, Curto J, Franci C, Diaz VM, Garcia de Herreros A, Baulida J (2011) TFCP2c/LSF/LBP-1c is required for Snail1-induced fibronectin gene expression. Biochem J 435: 563-568

Ricono JM, Huang M, Barnes LA, Lau SK, Weis SM, Schlaepfer DD, Hanks SK, Cheresh DA (2009) Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res 69: 1383-1391

Rybin VO, Guo J, Gertsberg Z, Feinmark SJ, Steinberg SF (2008) Phorbol 12-myristate 13-acetate-dependent protein kinase C delta-Tyr311 phosphorylation in cardiomyocyte caveolae. J Biol Chem 283: 17777-17788

Shen MR, Chou CY, Ellory JC (2000) Volume-sensitive KCI cotransport associated with human cervical carcinogenesis. Pflugers Arch 440: 751-760

Shen MR, Chou CY, Hsu KF, Liu HS, Dunham PB, Holtzman EJ, Ellory JC (2001) The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation. Proc Natl Acad Sci U S A 98: 14714-14719

Shen MR, Hsu YM, Hsu KF, Chen YF, Tang MJ, Chou CY (2006) Insulin-like growth factor 1 is a potent stimulator of cervical cancer cell invasiveness and proliferation that is modulated by alphavbeta3 integrin signaling. Carcinogenesis 27: 962-971

Shen MR, Lin AC, Hsu YM, Chang TJ, Tang MJ, Alper SL, Ellory JC, Chou CY (2004) Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells. J Biol Chem 279: 40017-40025

Shin HJ, Rho SB, Jung DC, Han IO, Oh ES, Kim JY (2011) Carbonic anhydrase IX (CA9) modulates tumor-associated cell migration and invasion. J Cell Sci 124: 1077-1087

Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15: 209-219

Singh R, Lei P, Andreadis ST (2009) PKC-delta binds to E-cadherin and mediates EGF-induced cell scattering. Exp Cell Res 315: 2899-2913

Sleeman JP, Thiery JP (2011) SnapShot: The Epithelial-Mesenchymal Transition. Cell 145: 162-162 e161

Soltoff SP (2007) Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta. Trends Pharmacol Sci 28: 453-458

Srivastava S, Ramdass B, Nagarajan S, Rehman M, Mukherjee G, Krishna S (2010) Notch1 regulates the functional contribution of RhoC to cervical carcinoma progression. Brit J Cancer 102: 196-205

Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiol Rev 88: 1341-1378

Syrjanen K, Kataja V, Yliskoski M, Chang F, Syrjanen S, Saarikoski S (1992) Natural history of cervical human papillomavirus lesions does not substantiate the biologic relevance of the Bethesda System. Obstet Gynecol 79: 675-682

Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11: 51-59

Tan C, Costello P, Sanghera J, Dominguez D, Baulida J, de Herreros AG, Dedhar S (2001) Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/- human colon carcinoma cells. Oncogene 20: 133-140

Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139: 871-890

Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131-142

Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283: 33437-33446

Uddin S, Sassano A, Deb DK, Verma A, Majchrzak B, Rahman A, Malik AB, Fish EN, Platanias LC (2002) Protein kinase C-delta (PKC-delta) is activated by type I interferons and mediates phosphorylation of Stat1 on serine 727. J Biol Chem 277: 14408-14416

van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65: 3756-3788

Veeraraghavalu K, Subbaiah VK, Srivastava S, Chakrabarti O, Syal R, Krishna S (2005) Complementation of human papillomavirus type 16 E6 and E7 by Jagged1-specific Notch1-phosphatidylinositol 3-kinase signaling involves pleiotropic oncogenic functions independent of CBF1;Su(H);Lag-1 activation. J Virol 79: 7889-7898

Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18: 1131-1143

Villar J, Arenas MI, MacCarthy CM, Blanquez MJ, Tirado OM, Notario V (2007) PCPH/ENTPD5 expression enhances the invasiveness of human prostate cancer cells by a protein kinase C delta-dependent mechanism. Cancer Res 67: 10859-10868

Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009a) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15: 416-428

Wu Y, Evers BM, Zhou BP (2009b) Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J Biol Chem 284: 640-648

Wu Y, Zhou BP (2010) Snail: More than EMT. Cell Adh Migr 4: 199-203

Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927-939

Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, Kumar R (2005) Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions. Cancer Res 65: 3179-3184

Yi JY, Hur KC, Lee E, Jin YJ, Arteaga CL, Son YS (2002) TGFbeta1 -mediated epithelial to mesenchymal transition is accompanied by invasion in the SiHa cell line. Eur J Cell Biol 81: 457-468

Yoon SO, Shin S, Lipscomb EA (2006) A novel mechanism for integrin-mediated ras activation in breast carcinoma cells: the alpha6beta4 integrin regulates ErbB2 translation and transactivates epidermal growth factor receptor/ErbB2 signaling. Cancer Res 66: 2732-2739

Yoshida K, Wang HG, Miki Y, Kufe D (2003) Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO J 22: 1431-1441

Yu X, Miyamoto S, Mekada E (2000) Integrin alpha 2 beta 1-dependent EGF receptor activation at cell-cell contact sites. Journal of cell science 113 ( Pt 12): 2139-2147

Yuan LW, Soh JW, Weinstein IB (2002) Inhibition of histone acetyltransferase function of p300 by PKCdelta. Biochim Biophys Acta 1592: 205-211

Zha YH, He JF, Mei YW, Yin T, Mao L (2007) Zinc-finger transcription factor snail accelerates survival, migration and expression of matrix metalloproteinase-2 in human bone mesenchymal stem cells. Cell Biol Int 31: 1089-1096

Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6: 931-940

zur Hausen H (1991) Human papillomaviruses in the pathogenesis of anogenital cancer. Virology 184: 9-13

zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342-350

Zweidler-Mckay PA, Grimes HL, Flubacher MM, Tsichlis PN (1996) Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol Cell Biol 16: 4024-4034
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw