進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1306202010393800
論文名稱(中文) 以多巴胺及穀胱甘肽修飾線性及星狀聚穀胺酸之抗氧化活性探討
論文名稱(英文) Antioxidant Activity of Linear and Star-shaped Poly(L-glutamic acid) Polypeptides Modified with Dopamine and Glutathione
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 蘇靖舫
研究生(英文) Ching-Fang Su
學號 N36074518
學位類別 碩士
語文別 中文
論文頁數 98頁
口試委員 指導教授-詹正雄
口試委員-張鑑祥
口試委員-陳炳宏
口試委員-游聲盛
中文關鍵字 多巴胺  穀胱甘肽  穀胺酸  星狀聚合物  抗氧化 
英文關鍵字 dopamine  glutathione  glutamic acid  star polymer  antioxidant 
學科別分類
中文摘要 本研究利用一級胺及多元醇作為起始劑,以α-胺基酸 N-羧酸酐開環聚合法成功合成出線性與星狀聚榖胺酸,並利用EDC/NHS法將多巴胺及穀胱甘肽接枝於聚穀胺酸上,製備出一系列具抗氧化活性的接枝聚合物,再以1H NMR、MALDI-TOF、GPC及UV-vis光譜鑑定其聚合度、分子量及接枝量,探討不同分子型態及抗氧化劑種類對接枝聚合物的抗氧化活性影響。透過三種抗氧化活性測定,皆可發現純聚穀胺酸 (PLG) 幾乎沒有抗氧化活性;聚穀胺酸-接枝-穀胱甘肽 (PLG-GSH) 之抗氧化能力相較於純穀胱甘肽明顯減弱許多;聚穀胺酸-接枝-多巴胺 (PLG-Dopa) 與聚穀胺酸-接枝-多巴胺/穀胱甘肽 (PLG-Dopa-GSH) 之抗氧化能力則隨著高分子濃度上升而增強,可知其抗氧化活性主要是由多巴胺賦予,且抗氧化活性EC50隨著臂數增加而降低,與高分子多臂造成的立體結構效應有關,將抗氧化劑小分子接枝於聚胺基酸側鏈後,星狀接枝物能形成高抗氧化局部濃度之聚合物。最後透過溶血性及細胞活性測試確認接枝聚合物具備生物相容性與低細胞毒性,並比較抗氧化活性EC50與細胞存活率IC50,可發現PLG-Dopa-GSH之EC50皆小於其IC50,表示在較低高分子濃度下即可達到抑制生物體內50%的自由基而不會造成細胞毒性,其中又以6-armed PLG-Dopa-GSH效能最佳,可知星狀聚穀胺酸能透過接枝方法形成一高抗氧化活性、低細胞毒性之抗氧化劑,極具發展性。
英文摘要 The aim of this study was to investigate the effects of topology and antioxidants on the antioxidant-grafted polypeptides. The linear and star-shaped poly(L-glutamic acid) (PLG) polypeptides were synthesized by N-carboxyanhydrides (NCAs) ring opening polymerization (ROP) using primary amine and polyols as initiators, followed by deprotection. Graft copolypeptides (PLG-Dopa, PLG-GSH and PLG-Dopa-GSH) were obtained by EDC/NHS coupling chemistry using dopamine (Dopa) and glutathione (GSH). Successful synthesis of these polypeptides was confirmed by 1H NMR, MALDI TOF, GPC, UV-vis and IR spectra analyses. The conformation of polypeptides was investigated by circular dichroism (CD) spectroscopy, demonstrating the grafting of Dopa and GSH onto PLG was accompanied by a conformational change from a random coil to α–helical structure. The results showed that the antioxidant activities of PLG-Dopa and PLG-Dopa-GSH were ascribed to Dopa instead of GSH. Our experimental data showed that multi-armed polypeptides exhibited better antioxidant activity than linear ones, which could be attributed that they could form a dense structure with higher local antioxidant concentration. It was found that both PLG-Dopa and PLG-Dopa-GSH exhibited low hemolysis, suggesting good hemocompatibility. These graft copolypeptides with a given concentration to inhibit 50% free radicals would not cause cytotoxicity.
論文目次 目錄
摘要 I
Extended Abstract II
致謝 XIII
目錄 XIV
表目錄 XVIII
圖目錄 XIX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 聚胺基酸 3
2.1.1 胺基酸之基本性質 3
2.1.2 蛋白質結構 4
2.2 胺基酸之聚合 6
2.2.1 NCAs之合成 7
2.2.2 以一級胺作為起始劑進行NCAs開環聚合 8
2.2.3 以一級醇作為起始劑進行NCAs開環聚合 8
2.3 非線性高分子 10
2.3.1 星狀聚合物 (Star polymer) 10
2.3.2 接枝聚合物 (Graft polymer) 11
2.4 抗氧化劑 12
2.4.1 抗氧化劑簡介 12
2.4.2 多巴胺 13
2.4.3 穀胱甘肽 14
2.4.4 抗氧化劑之應用 15
第三章 實驗方法與步驟 16
3.1 實驗藥品 16
3.2 實驗用細胞 18
3.3 實驗儀器與原理 19
3.3.1 核磁共振光譜儀 (NMR) 19
3.3.2 凝膠滲透層析儀 (GPC) 21
3.3.3 基質輔助雷射脫附游離飛行時間質譜儀 (MALDI-TOF MS) 22
3.3.4 傅立葉轉換紅外線光譜儀 (FT-IR) 23
3.3.5 圓二色光譜儀 (CD) 25
3.3.6 紫外光-可見光光譜儀 (UV-vis) 26
3.3.7 酵素免疫分析判讀儀 (ELISA reader) 27
3.4 聚胺基酸之合成 29
3.4.1 無水溶劑之製備 29
3.4.2 -benzyl-L-glutamic acid NCAs (BLG NCAs) 之製備 29
3.4.3 線性聚穀胺酸之合成 30
3.4.4 星狀聚穀胺酸之合成 31
3.4.5 移除聚穀胺酸之benzyl保護基 32
3.5 接枝聚合物之製備 32
3.5.1 聚穀胺酸-接枝-多巴胺 (PLG-Dopa) 33
3.5.2 聚穀胺酸-接枝-穀胱甘肽 (PLG-GSH) 33
3.5.3 聚穀胺酸-接枝-多巴胺/穀胱甘肽 (PLG-Dopa-GSH) 34
3.6 聚胺基酸之性質測試 34
3.6.1 1H NMR測定接枝聚穀胺酸之聚合度與接枝量 34
3.6.2 GPC測定聚穀胺酸之分子量 35
3.6.3 MALDI-TOF MS測定聚穀胺酸之分子量 35
3.6.4 UV-vis測定接枝聚穀胺酸之接枝量 35
3.6.5 FT-IR鑑定接枝聚穀胺酸之結構 35
3.6.6 CD鑑定接枝聚穀胺酸之二級結構 36
3.7 抗氧化活性之測定 36
3.7.1 ABTS自由基捕捉能力測定 36
3.7.2 DPPH自由基捕捉能力測定 37
3.7.3 還原力測定 37
3.8 溶血性測試 (Hemolysis) 38
3.9 細胞培養 38
3.9.1 PBS緩衝溶液與培養基之配製 38
3.9.2 細胞解凍 39
3.9.3 細胞分盤 39
3.9.4 細胞冷凍 40
3.10 細胞毒性測試 40
3.10.1 細胞計數/鋪細胞 40
3.10.2 配藥/加藥 41
3.10.3 細胞呈色 41
第四章 結果與討論 42
4.1 聚胺基酸之合成與分析 42
4.1.1 聚穀胺酸之聚合度與分子量 43
4.1.2 接枝聚穀胺酸之接枝量與分子量 52
4.1.3 接枝聚穀胺酸之穩定性探討 65
4.2 聚合物之結構 66
4.2.1 FT-IR鑑定聚穀胺酸之結構 66
4.2.2 CD鑑定接枝聚穀胺酸之二級結構 69
4.3 接枝聚穀胺酸之抗氧化活性分析 71
4.3.1 ABTS自由基捕捉能力測定 72
4.3.2 DPPH自由基捕捉能力測定 78
4.3.3 還原力測定 80
4.4 接枝聚穀胺酸之溶血性探討 82
4.5 接枝聚穀胺酸之細胞毒性探討 83
第五章 結論 86
第六章 參考文獻 88




參考文獻 1. Saranya, T. S.; Rajan, V. K.; Biswas, R.; Jayakumar, R.; Sathianarayanan, S.Synthesis, Characterisation and Biomedical Applications of Curcumin Conjugated Chitosan Microspheres. Int. J. Biol. Macromol. 2018, 110, 227–233.
2. Spizzirri, U. G.; Parisi, O. I.; Iemma, F.; Cirillo, G.; Puoci, F.; Curcio, M.; Picci, N.Antioxidant–Polysaccharide Conjugates for Food Application by Eco-Friendly Grafting Procedure. Carbohydr. Polym. 2010, 79 (2), 333–340.
3. Xie, M.; Hu, B.; Wang, Y.; Zeng, X.Grafting of Gallic Acid onto Chitosan Enhances Antioxidant Activities and Alters Rheological Properties of the Copolymer. J. Agric. Food Chem. 2014, 62 (37), 9128–9136.
4. Namdari, S.; Goel, D. P.; Romanowski, J.; Glaser, D.; Warner, J. J. P.Principles of Glenoid Component Design and Strategies for Managing Glenoid Bone Loss in Revision Shoulder Arthroplasty in the Absence of Infection and Rotator Cuff Tear. J. Shoulder Elb. Surg. 2011, 20 (6),
5. Buxbaum, E.Fundamentals of Protein Structure and Function; Springer US: Boston, MA, 2007.
6. Freedman, R. B.Proteins: Structures and Molecular Properties. Trends Biochem. Sci. 1985, 10 (2), 82.
7. Fletterick, R. J.Introduction to Protein Structure, by Carl Branden and John Tooze. New York: Garland Publishing Company, 302 Pages, $27.95 (Paper), 1991. Proteins Struct. Funct. Genet. 1992, 12 (2), 200–200.
8. Perutz, M. F.Structural Revolution. Nature 1991, 353 (6342), 311.
9. Berg, J.; Tymoczko, J.; Stryer, L.Biochemistry, 5th Edition; 2002.
10. Petsko, G. A.; Ringe, D., Protein Structure and Function. New Science Press: 2004.
11. Harrison, P.Principles of Protein Structure. FEBS Lett. 1980, 118 (1), 151–152.
12. Kabsch, W.; Sander, C.Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 1983, 22 (12), 2577–2637.
13. Carlsen, A.; Lecommandoux, S.Self-Assembly of Polypeptide-Based Block Copolymer Amphiphiles. Curr. Opin. Colloid Interface Sci. 2009, 14 (5), 329–339.
14. Deming, T. J.Polypeptide Materials: New Synthetic Methods and Applications. Adv. Mater. 1997, 9 (4), 299–311.
15. Tirrell, D. A.; Fournier, M. J.; Mason, T. L.Genetic Engineering of Polymeric Materials. MRS Bull. 1991, 16 (7), 23–28.
16. Krejchi, M.; Atkins, E.; Waddon, A.; Fournier, M.; Mason, T.; Tirrell, D.Chemical Sequence Control of Beta-Sheet Assembly in Macromolecular Crystals of Periodic Polypeptides. Science (80-. ). 1994, 265 (5177), 1427–1432.
17. Behrendt, R.; White, P.; Offer, J.Advances in Fmoc Solid-Phase Peptide Synthesis. J. Pept. Sci. 2016, 22 (1), 4–27.
18. Mitchell, A. R.Bruce Merrifield and Solid-Phase Peptide Synthesis: A Historical Assessment. Biopolymers 2008, 90 (3), 175–184.
19. Kricheldorf, H. R.Polypeptides and 100 Years of Chemistry of α-Amino AcidN-Carboxyanhydrides. Angew. Chemie Int. Ed. 2006, 45 (35), 5752–5784.
20. Fischer, P. M.; Zheleva, D. I.Liquid-Phase Peptide Synthesis on Polyethylene Glycol (PEG) Supports Using Strategies Based on the 9-Fluorenylmethoxycarbonyl Amino Protecting Group: Application of PEGylated Peptides in Biochemical Assays. J. Pept. Sci. 2002, 8 (9), 529–542.
21. BAYER, E.; MUTTER, M.Liquid Phase Synthesis of Peptides. Nature 1972, 237 (5357), 512–513.
22. Deming, T.; Aggeli, A.Peptide-Based Materials; Deming, T., Ed.; Topics in Current Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; Vol. 310.
23. Habraken, G. J. M.; Heise, A.; Thornton, P. D.Block Copolypeptides Prepared by N-Carboxyanhydride Ring-Opening Polymerization. Macromol. Rapid Commun. 2012, 33 (4), 272–286.
24. Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.-A.; Zhong, Z.Functional Polypeptide and Hybrid Materials: Precision Synthesis via α-Amino Acid N-Carboxyanhydride Polymerization and Emerging Biomedical Applications. Prog. Polym. Sci. 2014, 39 (2), 330–364.
25. Kricheldorf, H. R.Polypeptides and 100 Years of Chemistry of α-Amino AcidN-Carboxyanhydrides. Angew. Chemie Int. Ed. 2006, 45 (35), 5752–5784.
26. Deming, T. J.Synthesis of Side-Chain Modified Polypeptides. Chem. Rev. 2016, 116 (3), 786–808.
27. Leuchs Walter, H.Ueber Eine Neue Synthese Des Serins. Berichte der Dtsch. Chem. Gesellschaft 1906, 39 (3), 2644–2649.
28. Leuchs Wilhelm, H.Über Die Isomerie Der Carbäthoxyl-Glycyl Glycinester. Berichte der Dtsch. Chem. Gesellschaft 1907, 40 (3), 3235–3249.
29. Leuchs Walter, H.Über Die Anhydride von α-Amino-N-Carbonsäuren Und Die von α-Aminosäuren. Berichte der Dtsch. Chem. Gesellschaft 1908, 41 (2), 1721–1726.
30. Daly, W. H.; Poché, D.The Preparation of N-Carboxyanhydrides of α-Amino Acids Using Bis(Trichloromethyl)Carbonate. Tetrahedron Lett. 1988, 29 (46), 5859–5862.
31. Wilder, R.; Mobashery, S.The Use of Triphosgene in Preparation of N-Carboxy .Alpha.-Amino Acid Anhydrides. J. Org. Chem. 1992, 57 (9), 2755–2756.
32. Poché, D. S.; Moore, M. J.; Bowles, J. L.An Unconventional Method for Purifying the N-Carboxyanhydride Derivatives of γ-Alkyl-L-Glutamates. Synth. Commun. 1999, 29 (5), 843–854.
33. Kramer, J. R.; Deming, T. J.General Method for Purification of α-Amino Acid- N -Carboxyanhydrides Using Flash Chromatography. Biomacromolecules 2010, 11 (12), 3668–3672.
34. Huang, J.; Heise, A.Stimuli Responsive Synthetic Polypeptides Derived from N-Carboxyanhydride (NCA) Polymerisation. Chem. Soc. Rev. 2013, 42 (17), 7373.
35. Deming, T. J.Living Polymerization of α-Amino Acid- N -Carboxyanhydrides. J. Polym. Sci. Part A Polym. Chem. 2000, 38 (17), 3011–3018.
36. Chan, B. A.; Xuan, S.; Horton, M.; Zhang, D.1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N -Butyl N -Carboxyanhydride Using Alcohol Initiators. Macromolecules 2016, 49 (6), 2002–2012.
37. Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G.Star Polymers. Chem. Rev. 2016, 116 (12), 6743–6836.
38. Inoue, K.Functional Dendrimers, Hyperbranched and Star Polymers. Prog. Polym. Sci. 2000, 25 (4), 453–571.
39. Wu, W.; Wang, W.; Li, J.Star Polymers: Advances in Biomedical Applications. Prog. Polym. Sci. 2015, 46, 55–85.
40. Thornton, P. D.; Billah, S. M. R.; Cameron, N. R.Enzyme-Degradable Self-Assembled Hydrogels From Polyalanine-Modified Poly(Ethylene Glycol) Star Polymers. Macromol. Rapid Commun. 2013, 34 (3), 257–262.
41. Wang, W.; Zhang, L.; Liu, M.; Le, Y.; Lv, S.; Wang, J.; Chen, J.-F.Dual-Responsive Star-Shaped Polypeptides for Drug Delivery. RSC Adv. 2016, 6 (8), 6368–6377.
42. Feng, C.; Li, Y.; Yang, D.; Hu, J.; Zhang, X.; Huang, X.Well-Defined Graft Copolymers: From Controlled Synthesis to Multipurpose Applications. Chem. Soc. Rev. 2011, 40 (3), 1282–1295.
43. BHATTACHARYA, A.Grafting: A Versatile Means to Modify PolymersTechniques, Factors and Applications. Prog. Polym. Sci. 2004, 29 (8), 767–814.
44. Zhu, Y.; Wang, J.; Li, X.; Zhao, D.; Sun, J.; Liu, X.Self-Assembly and Emulsification of Dopamine-Modified Hyaluronan. Carbohydr. Polym. 2015, 123, 72–79.
45. Lee, M. S.; Lee, J. E.; Byun, E.; Kim, N. W.; Lee, K.; Lee, H.; Sim, S. J.; Lee, D. S.; Jeong, J. H.Target-Specific Delivery of SiRNA by Stabilized Calcium Phosphate Nanoparticles Using Dopa–Hyaluronic Acid Conjugate. J. Control. Release 2014, 192, 122–130.
46. Ding, J.; Zhuang, X.; Xiao, C.; Cheng, Y.; Zhao, L.; He, C.; Tang, Z.; Chen, X.Preparation of Photo-Cross-Linked PH-Responsive Polypeptide Nanogels as Potential Carriers for Controlled Drug Delivery. J. Mater. Chem. 2011, 21 (30), 11383.
47. Kumar, D.; Pandey, J.; Raj, V.; Kumar, P.A Review on the Modification of Polysaccharide Through Graft Copolymerization for Various Potential Applications. Open Med. Chem. J. 2017, 11 (1), 109–126.
48. Curcio, M.; Puoci, F.; Iemma, F.; Parisi, O. I.; Cirillo, G.; Spizzirri, U. G.; Picci, N.Covalent Insertion of Antioxidant Molecules on Chitosan by a Free Radical Grafting Procedure. J. Agric. Food Chem. 2009, 57 (13), 5933–5938.
49. Ramot, Y.; Haim-Zada, M.; Domb, A. J.; Nyska, A.Biocompatibility and Safety of PLA and Its Copolymers. Adv. Drug Deliv. Rev. 2016, 107, 153–162.
50. Zhang, Z.; Tan, S.; Feng, S.-S.Vitamin E TPGS as a Molecular Biomaterial for Drug Delivery. Biomaterials 2012, 33 (19), 4889–4906.
51. Lobo, V.; Patil, A.; Phatak, A.; Chandra, N.Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4 (8), 118.
52. Birben, E.; Sahiner, U. M.; Sackesen, C.; Erzurum, S.; Kalayci, O.Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5 (1), 9–19.
53. Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L.Antioxidant Therapy: Current Status and Future Prospects. Curr. Med. Chem. 2011, 18 (25), 3871–3888.
54. Liu, Z.; Zhou, T.; Ziegler, A. C.; Dimitrion, P.; Zuo, L.Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev. 2017, 2017, 1–11.
55. Yen, G.-C.; Hsieh, C.-L.Antioxidant Effects of Dopamine and Related Compounds. Biosci. Biotechnol. Biochem. 1997, 61 (10), 1646–1649.
56. Zuo, A.-R.; Dong, H.-H.; Yu, Y.-Y.; Shu, Q.-L.; Zheng, L.-X.; Yu, X.-Y.; Cao, S.-W.The Antityrosinase and Antioxidant Activities of Flavonoids Dominated by the Number and Location of Phenolic Hydroxyl Groups. Chin. Med. 2018, 13 (1), 51.
57. Rana, D.; Colombani, T.; Mohammed, H. S.; Eggermont, L. J.; Johnson, S.; Annabi, N.; Bencherif, S. A.Strategies to Prevent Dopamine Oxidation and Related Cytotoxicity Using Various Antioxidants and Nitrogenation. Emergent Mater. 2019, 2 (2), 209–217.
58. Offen, D.; Ziv, I.; Sternin, H.; Melamed, E.; Hochman, A.Prevention of Dopamine-Induced Cell Death by Thiol Antioxidants: Possible Implications for Treatment of Parkinson’s Disease. Exp. Neurol. 1996, 141 (1), 32–39.
59. Muñoz, P.; Huenchuguala, S.; Paris, I.; Segura-Aguilar, J.Dopamine Oxidation and Autophagy. Parkinsons. Dis. 2012, 2012, 1–13.
60. Forman, H. J.; Zhang, H.; Rinna, A.Glutathione: Overview of Its Protective Roles, Measurement, and Biosynthesis. Mol. Aspects Med. 2009, 30 (1–2), 1–12.
61. Ulrich, K.; Jakob, U.The Role of Thiols in Antioxidant Systems. Free Radic. Biol. Med. 2019, 140, 14–27.
62. Hood, E.; Simone, E.; Wattamwar, P.; Dziubla, T.; Muzykantov, V.Nanocarriers for Vascular Delivery of Antioxidants. Nanomedicine 2011, 6 (7), 1257–1272.
63. Jiang, J.; Xiong, Y. L.Natural Antioxidants as Food and Feed Additives to Promote Health Benefits and Quality of Meat Products: A Review. Meat Sci. 2016, 120, 107–117.
64. Thorat, I.Antioxidants, Their Properties, Uses in Food Products and Their Legal Implications. Int. J. Food Stud. 2013, 2 (1), 81–104.
65. Souto, E. B.; Severino, P.; Basso, R.; Santana, M. H. A.Encapsulation of Antioxidants in Gastrointestinal-Resistant Nanoparticulate Carriers. Methods in Molecular Biology. 2013.
66. Farris, P.; Krutmann, J.; Li, Y.-H.; McDaniel, D.; Krol, Y.Resveratrol: A Unique Antioxidant Offering a Multi-Mechanistic Approach for Treating Aging Skin. J. Drugs Dermatol. 2013, 12 (12), 1389–1394.
67. Nichols, J. A.; Katiyar, S. K.Skin Photoprotection by Natural Polyphenols: Anti-Inflammatory, Antioxidant and DNA Repair Mechanisms. Arch. Dermatol. Res. 2010, 302 (2), 71–83.
68. Skoog, D. A.; Holler, F. J.; Nieman, T. A.Summary for Policymakers. In Climate Change 2013 - The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, 2001; pp 1–30.
69. Striegel, A. M.; Yau, W. W.; Kirkland, J. J.; Bly, D. D.Modern Size-Exclusion Liquid Chromatography; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009.
70. Clark, A. E.; Kaleta, E. J.; Arora, A.; Wolk, D. M.Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: A Fundamental Shift in the Routine Practice of Clinical Microbiology. Clin. Microbiol. Rev. 2013, 26 (3), 547–603.
71. Aebersold, R.; Mann, M.Mass Spectrometry-Based Proteomics. Nature 2003, 422 (6928), 198–207.
72. Fenn, J.; Mann, M.; Meng, C.; Wong, S.; Whitehouse, C.Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science (80-. ). 1989, 246 (4926), 64–71.
73. Patel, R.MALDI-TOF MS for the Diagnosis of Infectious Diseases. Clin. Chem. 2015, 61 (1), 100–111.
74. Jackson, M.; Mantsch, H. H.The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30 (2), 95–120.
75. Laera, S.; Ceccone, G.; Rossi, F.; Gilliland, D.; Hussain, R.; Siligardi, G.; Calzolai, L.Measuring Protein Structure and Stability of Protein–Nanoparticle Systems with Synchrotron Radiation Circular Dichroism. Nano Lett. 2011, 11 (10), 4480–4484.
76. Ranjbar, B.; Gill, P.Circular Dichroism Techniques: Biomolecular and Nanostructural Analyses- A Review. Chem. Biol. Drug Des. 2009, 74 (2), 101–120.
77. Uzawa, T.; Nishimura, C.; Akiyama, S.; Ishimori, K.; Takahashi, S.; Dyson, H. J.; Wright, P. E.Hierarchical Folding Mechanism of Apomyoglobin Revealed by Ultra-Fast H/D Exchange Coupled with 2D NMR. Proc. Natl. Acad. Sci. 2008, 105 (37), 13859–13864.
78. Rana, D.; Colombani, T.; Mohammed, H. S.; Eggermont, L. J.; Johnson, S.; Annabi, N.; Bencherif, S. A.Strategies to Prevent Dopamine Oxidation and Related Cytotoxicity Using Various Antioxidants and Nitrogenation. Emergent Mater. 2019, 2 (2), 209–217.
79. Bonduelle, C.Secondary Structures of Synthetic Polypeptide Polymers. Polym. Chem. 2018, 9 (13), 1517–1529.
80. Lee, K. J.; Oh, Y. C.; Cho, W. K.; Ma, J. Y.Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evidence-Based Complement. Altern. Med. 2015, 2015, 1–13.
81. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26 (9–10), 1231–1237.
82. Li, S.; Yuan, L.; Zhang, B.; Zhou, W.; Wang, X.; Bai, D.Photostability and Antioxidant Activity Studies on the Inclusion Complexes of Trans -Polydatin with β-Cyclodextrin and Derivatives. RSC Adv. 2018, 8 (46), 25941–25948.
83. Vijayalakshmi, M.; Ruckmani, K.Ferric Reducing Anti-Oxidant Power Assay in Plant Extract. Bangladesh J. Pharmacol. 2016, 11 (3), 570.
84. Öman, T.; Tessem, M.-B.; Bathen, T. F.; Bertilsson, H.; Angelsen, A.; Hedenström, M.; Andreassen, T.Identification of Metabolites from 2D 1H-13C HSQC NMR Using Peak Correlation Plots. BMC Bioinformatics 2014, 15 (1), 413.
85. Kim, J. Y.; Ryu, S. B.; Park, K. D.Preparation and Characterization of Dual-Crosslinked Gelatin Hydrogel via Dopa-Fe3+ Complexation and Fenton Reaction. J. Ind. Eng. Chem. 2018, 58, 105–112.
86. Fan, C.; Fu, J.; Zhu, W.; Wang, D.-A.A Mussel-Inspired Double-Crosslinked Tissue Adhesive Intended for Internal Medical Use. Acta Biomater. 2016, 33, 51–63.
87. DeGiglio, E.; Trapani, A.; Cafagna, D.; Sabbatini, L.; Cometa, S.Dopamine-Loaded Chitosan Nanoparticles: Formulation and Analytical Characterization. Anal. Bioanal. Chem. 2011, 400 (7), 1997–2002.
88. Luo, H.; Gu, C.; Zheng, W.; Dai, F.; Wang, X.; Zheng, Z.Facile Synthesis of Novel Size-Controlled Antibacterial Hybrid Spheres Using Silver Nanoparticles Loaded with Poly-Dopamine Spheres. RSC Adv. 2015, 5 (18), 13470–13477.
89. Inoue, K.; Baden, N.; Terazima, M.Diffusion Coefficient and the Secondary Structure of Poly-L-Glutamic Acid in Aqueous Solution. J. Phys. Chem. B 2005, 109 (47), 22623–22628.
90. Poole, L. B.The Basics of Thiols and Cysteines in Redox Biology and Chemistry. Free Radic. Biol. Med. 2015, 80, 148–157.
91. Ferrer-Sueta, G.; Manta, B.; Botti, H.; Radi, R.; Trujillo, M.; Denicola, A.Factors Affecting Protein Thiol Reactivity and Specificity in Peroxide Reduction. Chem. Res. Toxicol. 2011, 24 (4), 434–450.
92. Salsbury, F. R.; Knutson, S. T.; Poole, L. B.; Fetrow, J. S.Functional Site Profiling and Electrostatic Analysis of Cysteines Modifiable to Cysteine Sulfenic Acid. Protein Sci. 2008, 17 (2), 299–312.
93. Kortemme, T.; Creighton, T. E.Ionisation of Cysteine Residues at the Termini of Model α-Helical Peptides. Relevance to Unusual Thiol PKaValues in Proteins of the Thioredoxin Family. J. Mol. Biol. 1995, 253 (5), 799–812.
94. Chen, Y.-F.; Lai, Y.-D.; Chang, C.-H.; Tsai, Y.-C.; Tang, C.-C.; Jan, J.-S.Star-Shaped Polypeptides Exhibit Potent Antibacterial Activities. Nanoscale 2019, 11 (24), 11696–11708.
95. Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S. I.; Chun, O. K.Comparison of ABTS/DPPH Assays to Measure Antioxidant Capacity in Popular Antioxidant-Rich US Foods. J. Food Compos. Anal. 2011, 24 (7), 1043–1048.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw