進階搜尋


下載電子全文  
系統識別號 U0026-1305201817365500
論文名稱(中文) 雙因素模型下測驗分數信度係數之比較
論文名稱(英文) A Comparison of Reliability Coefficients for Test Scores Under Bi-factor Models
校院名稱 成功大學
系所名稱(中) 心理學系
系所名稱(英) Department of Psychology
學年度 106
學期 2
出版年 107
研究生(中文) 鄧祈允
研究生(英文) Chi-Yun Deng
學號 U76034075
學位類別 碩士
語文別 中文
論文頁數 65頁
口試委員 指導教授-黃柏僩
口試委員-洪素蘋
口試委員-徐立真
中文關鍵字 多向度測驗信度  雙因素模型  階層ω  多向度ω  分層α  Revelle的β 
英文關鍵字 Multidimensional test reliability  bi-factor model  hieratical omega  multidimensional omega  stratified alpha  Revelle’s beta 
學科別分類
中文摘要 估計一份測驗分數的信度時,應先檢視此測驗的向度。倘若該測驗為多向度結構的測驗,則應使用多向度測驗信度估計法,其中以分層 α、Revelle的 β、多向度 ω、階層 ω 等方法為常見的多向度測驗信度估計法。Green和Yang(2009)曾建議應使用多向度 ω 作為估計測驗信度的方法。McDonald(1970)則提出當測驗結構具有階層時,應考慮普通因素(general factor)的估計,提出階層 ω 以估計普通因素的信度。此種想法在理論與邏輯上較為合理,同時一般因素應是研究者所最關注的部分。然而多數情況中研究者並未仔細區分各種多向度估計法之間的差異(Zinberg, Relleve, Yovel & Li, 2005),因此本研究以同時比較4種多向度測驗信度估計法於各研究情境中的表現差異來區分各方法的特性。過去研究也較少探討估計法的運算實質意義與邏輯合理性,且選用的研究模型多是高階因素分析模型,然而Reise(2012)認為雙因素模型(bi-factor model)更能表徵構念的多向度性質,故本研究以雙因素模型做為研究模型。本研究操弄普通因素負荷量、子因素負荷量、子因素數目、樣本數產生模擬資料進行各估計法的比較。研究結果顯示多向度 ω 、分層 α 、β 估計表現穩定度最高,於小樣本情境亦是如此。但本研究最為關注的階層 ω 在普通因素負荷量高且子因素數目多並因素負荷量高時,估計穩定性高但偏誤大;普通因素負荷量低且子因素數目多並因素負荷量低時,也出現一樣的估計情形,和其他方法的真值差異也大。故上述兩種情境中並不建議只用階層 ω 作為信度單一指標,應搭配其他方法一同考量測驗的信度。而當普通因素負荷量高且子因素數目少並因素負荷量低時,階層 ω 作為信度指標並無重大的理論與邏輯瑕疵,其估計情況算除在小樣本下較不穩定外,其餘估計穩定性高,相對偏誤較小,和各估計方法的真值差異較小,此時可單用階層 ω 的作為信度指標,且測驗結構也較合理。
關鍵字:多向度測驗信度、雙因素模型、階層ω、多向度ω、分層α、Revelle的β

英文摘要 Stratified alpha, Revelle’s beta, multidimensional omega and hieratical omega really have different estimate performance and properties. In over all, hieratical omega has most clear operation real meaning but worst estimate performance such as accuracy compared to other reliability coefficients. In order to estimate and interpret a multidimensional test score more completely, we still suggest use hieratical omega as main reliability coefficient but need to consider other coefficient such as stratified alpha. This idea will help researcher or test user handle logical and estimate problem better. We also suggest use bi-factor model to represent test construct, it can make structure easier to justify and avoid some contract problem usually happened between high order factor analysis model and measurement theory. In sum, we courage to use bi-factor model combined hieratical omega and at lest one other multidimensional test reliability coefficient to investigate reliability issues.
Keywords: Multidimensional test reliability, bi-factor model, hieratical omega, multidimensional omega, stratified alpha, Revelle’s beta.
Introduction
論文目次 目錄
第一章 緒論 1
第一節 研究問題與背景 1
第二節 單向度測驗分數的信度估計 4
第三節 多向度測驗組合分數的信度估計 6
第四節 多向度測驗信度係數估計與模型轉換 12
第五節 本研究目的 17
第二章 研究方法 18
第一節 操弄變項 18
第二節 模擬流程 20
第三節 信度估計方式 20
第三章 結果 22
第一節 各方法之真值 22
第二節 模型參數估計未收斂情形 23
第三節 各方法估計之統計量 25
第四節 信度估計相對偏誤情形 30
第五節 信度估計變異數變化情形 31
第四章 結論 33
第一節 真值 33
第二節 古典測驗理論取向和模型取向信度估計表現差異 34
第三節 多向度測驗組合分數的信度意義 35
第四節 測量理論的觀點 36
第五節 綜合討論與研究限制 37
參考文獻 40
附錄 45
參考文獻 參考文獻
李庚霖 、區雅倫 、陳淑惠 、翁儷禎 (2009)。 “臺灣地區中老年身心社會生活狀況長期追蹤調查 ”短版 CES-D量表之心理計特性 。「 中華心理衛生學刊 」,22(4),383-410.
Bados, A., Gómez-Benito, J., & Balaguer, G. (2010). The state-trait anxiety inventory,trait version: does it really measure anxiety?. Journal of personality assessment, 92(6), 560-567.
Bollen, K. A. (1989). Structural equations with latent variables.
Brennan, R. L. (2006). Educational Measurement. ACE/Praeger Series on Higher
Education. Praeger. Available from: Greenwood Publishing Group, Inc. PO Box 5926, Portsmouth, NH 03802-6926.
Brown, W. (1910). Some experimental results in the correlation of mental abilities.
British Journal of psychology, 3(3), 296-322.
Christensen, L. B., Johnson, B., Turner, L. A., & Christensen, L. B. (2011). Research methods, design, and analysis.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of test. psychometrika, 16(3), 297-334.
Cronbach, L. J., Schönemann, P., & McKie, D. (1965). Alpha coefficients for stratified-parallel tests. Educational and Psychological Measurement, 25(2), 291-312.
Drolet, A. L., & Morrison, D. G. (2001). Do we really need multiple-item measures in service research?. Journal of service research, 3(3), 196-204.
Gignac, G. E., Palmer, B. R., & Stough, C. (2007). A confirmatory factor analytic investigation of the TAS–20: Corroboration of a five-factor model and suggestions for improvement. Journal of Personality Assessment, 89(3), 247-257.
Green, S. B., & Yang, Y. (2009). Commentary on coefficient alpha: A cautionary tale. Psychometrika, 74(1), 121-135.
Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74(1), 155-167.
Green, S. B., & Yang, Y. (2015). Evaluation of dimensionality in the assessment of internal consistency reliability: Coefficient alpha and omega coefficients.
Educational Measurement: Issues and Practice, 34(4), 14-20.
Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10(4), 255-282.
Hogan, T. P., Benjamin, A., & Brezinski, K. L. (2000). Reliability methods: A note on the frequency of use of various types. Educational and psychological measurement, 60(4), 523-531.
Ihaka, R., & Gentleman, R. (1993). R (Version 2.13. 0)[software].
Kamata, A., Turhan, A., & Darandari, E. (2003, April). Estimating reliability for multidimensional composite scale scores. In annual meeting of American Educational Research Association, Chicago, IL.
Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coefficients: Evaluation of methods, recommendations, and software for composite measures. Psychological methods, 21(1), 69
Li, H., Rosenthal, R., & Rubin, D. B. (1996). Reliability of measurement in psychology: From Spearman-Brown to maximal reliability. Psychological Methods, 1(1), 98.
Lord, F. M., & Novick, M. (1968). Statistical Theories of Mental Test Scoires. 42 Addison-Westley Publ. Co. Reading, Mass.
Luce, R. D., Bush, R. R., & Eugene, G. E. (1963). Handbook of mathematical psychology( pp. 3-41).
Margono, G. (2015). Multidimensional Reliability of Instrument for Measuring Students’ Attitudes Toward Statistics by Using Semantic Differential Scale. American Journal of Educational Research, 3(1), 49-53.
McDonald, R. P. (1970). The theoretical foundations of principal factor analysis, canonical factor analysis, and alpha factor analysis. British Journal of Mathematical and Statistical Psychology, 23(1), 1-21.
McDonald, R. P. (1981). The dimensionality of tests and items. British Journal of mathematical and statistical Psychology, 34(1), 100-117.
McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Lawrence Erlbaum Associates.
Michell, J. (1990). An introduction to the logic of psychological measurement. Erlbaum. Hillsdale, NJ.
Michell, J. (1997). Quantitative science and the definition of measurement in psychology. British Journal of Psychology, 88(3), 355-383.
Murphy, K. R., & Davidshofer, C. O. (1988). Psychological testing. Principles, and Applications, Englewood Cliffs.
Novick, M. R., & Lewis, C. (1966). Coefficient alpha and the reliability of composite measurements. ETS Research Report Series, 1966(1).
Patrick, C. J., Hicks, B. M., Nichol, P. E., & Krueger, R. F. (2007). A bifactor to modeling the structure of the Psychopathy Checklist-Revised. Journal of personality disorders, 21(2), 118-141.
Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of personality assessment, 92(6), 544-559.
Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16(1), 19-31.
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate behavioral research, 47(5), 667-696.
Revelle, W. (1979). Hierarchical cluster analysis and the internal structure of tests. Multivariate Behavioral Research, 14(1), 57-74.
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). Journal of statistical software, 48(2), 1-36.
Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22(1), 53-61.
Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107.
Spearman, C. (1910). Correlation calculated from faulty data. British journal of psychology, 3(3), 271-295.
Thorndike, E. L. (1904). The newest psychology.Educational Review, 28, 217-227.
Wechsler, D. (2014). Wechsler adult intelligence scale–Fourth Edition (WAIS– IV). San Antonio, Texas: Psychological Corporation.
Widhiarso, W., & Ravand, H. (2014). Estimating reliability coefficient for multidimensional measures: A pedagogical illustration. Review of Psychology, 21(2), 111–121.
Williams, C. D., Taylor, T. R., Makambi, K., Harrell, J., Palmer, J. R., Rosenberg, L., & Adams-Campbell, L. L. (2007). CES-D four-factor structure is confirmed, but not invariant, in a large cohort of African American women. Psychiatry research, 150(2), 173-180.
Yang, Y., & Green, S. B. (2010). A note on structural equation modeling estimates of reliability. Structural Equation Modeling, 17(1), 66-81.
Yung, Y. F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64(2), 113-128.
Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and McDonald’s ω H: Their relations with each other and two alternative of conceptualizations reliability. psychometrika, 70(1), 123-133.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-05-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-05-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw