進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1302201911331300
論文名稱(中文) 健康手環光學心率準確性之驗證: 青年與高齡族群的比較
論文名稱(英文) Examining the Accuracy of Fitness Trackers with Optical Heart Rate Technology: A Comparison between Young and Senior Adults
校院名稱 成功大學
系所名稱(中) 體育健康與休閒研究所
系所名稱(英) Institute of Physical Education, Health & Leisure Studies
學年度 107
學期 1
出版年 108
研究生(中文) 楊晁青
研究生(英文) Chao-Ching Yang
學號 RB6051090
學位類別 碩士
語文別 英文
論文頁數 52頁
口試委員 口試委員-李政德
口試委員-黃滄海
指導教授-周學雯
中文關鍵字 健身追蹤裝置  光體積變化描記圖法  高齡者  有氧運動 
英文關鍵字 Fitness Trackers  Photoplethysmography  Older Adults  Aerobic Exercise 
學科別分類
中文摘要 研究背景: 為了提升一般人們的身體健康情況,健身追蹤裝置可作為紀錄甚至提升配戴者身體活動量的有用工具。近幾年配有光體積變化描記圖法(PPG)、或稱光學心率感測器健康追蹤裝置能獲得即時的心跳數,而心跳率則是監控與控制運動強度的重要指標之一。儘管已有越來越多的研究提出光學心率感測器的潛在效益,較少有實證研究來以每秒的檢驗標準來檢視這些裝置的準確度。因此,本研究旨在檢視將光學心率裝置來監控年輕與高齡組群在運動時的每秒即時心跳之可行性。

方法: 本研究招募20名年輕與20名高齡族群的受試者。所有的受試者都會完成一系列靜態與動態的活動。Polar H7的胸戴式心率帶做為標準檢定裝置,實驗的光學心率手環為小米手環2帶與 Garmin VivosmartHR+。兩支手環的每秒心率讀數皆會透過廣播心率模式來進行記錄。多種的統計檢定方式包含絕對誤差平均值、一致性相關係數 (CCC)、組內相關係數 (ICC)、皮爾森相關係數以及布蘭德-奧特曼分析來檢視裝置的準確性。

結果: 與過去研究相同的是兩支光學手環整體上都呈現可接受的準確程度。首先,絕對誤差平均值的結果都小於10% (Garmin/年輕組 = 3.77%; Garmin/高齡組 = 4.73%; 小米/年輕組 = 7.69% ; 小米/高齡組 = 6.04%)。第二,Garmin從相關係數檢定測得的信度都有達到中等至佳 (CCC年輕=.92; CCC高齡=.80);至於小米的相關則是呈現中等 (CCC年輕=.76; CCC高齡=.73)。布蘭德-奧特曼分析的結果指出兩支裝置普遍上都會低估實際心率。而本研究最重要的發現是有些受試者在運動過程中會出現極端的誤差讀數。

結論: 本研究證實所驗證的兩支光學心率手環整體上準確度都有達到可接受的水準,而年齡並非影響光學心率測量準確度與否的因子。然而,本研究也建議未來的研究者可以將重點放在極端誤差讀數的出現頻率,因為這些較大的誤差可能會導致即時運動強度的誤判。
英文摘要 Introduction: To promote the health condition of general population, activity trackers might be ideal tools to record and even boost user’s physical activity. In recent years, the activity trackers with photoplethysmograpphy, or optical heart rate sensor can even acquire the real-time heart rate readings, which is an important parameter for monitoring and controlling exercise intensity. Although the practical benefits of optical heart rate monitors have been highlighted by more and more studies, there are scarce studies explore the accuracy of commercial fitness trackers with second-level data. Thus, this current study aimed to examine the feasibility of applying both devices to monitor instant heart rate during moderate exercises for young and senior adults.

Methods: This research recruited 20 young adults and 20 senior adults. All participants had undergone series of sedentary and moderate physical activities by using indoor aerobic exercise equipment. Polar H7 chest strap heart rate monitor was set as the criterion measurement against Xiaomi Mi Band 2 and Garmin VivosmartHR+. The second-by-second heart rate data from both devices were recorded through broadcast heart rate mode. Multi-statistical methods included mean absolute percentage error (MAPE), Lin’s concordance correlation coefficient (CCC), intraclass correlation coefficient (ICC), Pearson’s product correlation coefficient and Bland-Altman analysis were performed to examine the accuracy of both devices.

Results: In agreement with previous researches, both devices performed acceptable overall accuracy based on several statistical tests. First, the MAPE values were all below 10% (Garmin/Young = 3.77%; Garmin/Senior = 4.73%; Xiaomi/Young = 7.69% ; Xiaomi/Senior = 6.04%). Second, the reliability of Garmin from correlation tests were moderate to good (CCCyoung=.92; CCCsenior=.80). As for Xiaomi, the correlation coefficients were both moderate (CCCyoung=.76; CCCsenior=.73). The results from Bland-Altman analysis revealed that the optical devices would averagely underestimated the heart rate. Nonetheless, the most important finding from this current study was that some extreme errors occurred unexpectedly in certain participants.

Conclusion: This study has proved acceptable overall accuracy of selected fitness trackers, and age might not be an influential factor on optical heart rate detection. However, it’s strongly recommended that future researches can lay emphasis on the occurrence rate of extreme errors, which might lead to the misjudgment of real-time exercise intensity.
論文目次 Introduction .......................................... 1
1-1 Background ........................................ 1
1-2 Motivation .........................................2
1-3 Research purpose................................... 3
1-4 Contribution ...................................... 3

Literature Review...................................... 5
2-1 Measurement of physical activity .................. 5
2-2 Heart rate as a vital parameter in physical activity and aerobic exercise .................................. 5
2-3 Validation of fitness trackers .................... 7
2-3-2 Accuracy of pedometer and accelerometer ......... 7
2-3-3 Validation of optical heart rate device ........................................................7
2-4 Physical Fitness and health promotion for senior citizens .............................................. 9
2-5 Development of physical fitness for young adults ...................................................... 10
2-6 Chapter summary ...................................................... 11

Methods .............................................. 12
3-1 Inclusion criteria and exclusion criteria of participants ......................................... 12
3-2 Research materials................................ 13
3-3 Research procedure ............................... 15
3-3-1 Pre-exercise preparation........................ 15
3-3-2 Exercise protocols ............................. 17
3-4 Data acquisition and analysis .................... 21

Results............................................... 23
4-1 Subjects ......................................... 23
4-2 Paired differences and Lin’s concordance correlation coefficients.......................................... 23
4-3 Bland Altman analysis............................. 28
4-4 Comparison of correlation methods ................ 33

Discussion ........................................... 35
5-1 Accuracy of testing devices in different activities ...................................................... 35
5-2 Age factor didn’t affect the accuracy of optical heart rate device........................................... 36
5-3 Subject-specific errors in certain phase................................................. 37
5-4 Extreme errors among participants ................ 39
5-5 Requirement for validating protocol and standard for determining device accuracy .......................... 43

Conclusion ........................................... 45

Reference ............................................ 47
參考文獻 American College of Sports Medicine (2014). ACSM's guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer.
Böhm, M., Reil, J.-C., Deedwania, P., Kim, J. B., & Borer, J. S. (2015). Resting heart rate: risk indicator and emerging risk factor in cardiovascular disease. The American Journal of Medicine, 128(3), 219-228.
Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., . . . Watson, G. (2010). Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer's disease. Journal of Alzheimer's Disease, 22(2), 569-579.
Benedetto, S., Caldato, C., Bazzan, E., Greenwood, D. C., Pensabene, V., & Actis, P. (2018). Assessment of the Fitbit Charge 2 for monitoring heart rate. PLoS One, 13(2), e0192691.
Boudreaux, B. D., Hebert, E. P., Hollander, D. B., Williams, B. M., Cormier, C. L., Naquin, M. R., . . . Kraemer, R. R. (2017). Validity of wearable activity monitors during cycling and resistance exercise. Medicine and Science in Sports and Exercise.
Bouten, C. V., Koekkoek, K. T., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Transactions on Biomedical Engineering, 44(3), 136-147.
Bowers, M. T., Chalip, L., & Green, B. C. (2010). Youth sport development in the United States and the illusion of synergy. Routledge handbook of sports development, 173.
Brage, S., Westgate, K., Franks, P. W., Stegle, O., Wright, A., Ekelund, U., & Wareham, N. J. (2015). Estimation of free-living energy expenditure by heart rate and movement sensing: a doubly-labelled water study. PLoS One, 10(9), e0137206.
Bunn, J. A., Navalta, J. W., Fountaine, C. J., & REECE, J. D. J. (2018). Current state of commercial wearable technology in physical activity monitoring 2015–2017. International Journal of Exercise Science, 11(7), 503.
Challoner, A., & Ramsay, C. (1974). A photoelectric plethysmograph for the measurement of cutaneous blood flow. Physics in Medicine and Biology, 19(3), 317.
Cheatham, S. W., Kolber, M. J., & Ernst, M. P. (2015). Concurrent validity of resting pulse-rate measurements: A comparison of 2 smartphone applications, the Polar H7 belt monitor, and a pulse oximeter with bluetooth. Journal of Sport Rehabilitation, 24(2), 171-178.
Chen, C. C., & Barnhart, H. X. (2008). Comparison of ICC and CCC for assessing agreement for data without and with replications. Computational Statistics & Data Analysis, 53(2), 554-564.
Chen, C. C., & Barnhart, H. X. (2013). Assessing agreement with intraclass correlation coefficient and concordance correlation coefficient for data with repeated measures. Computational Statistics & Data Analysis, 60, 132-145.
Chen, Y. W., & Lin, R. X. (2016). Developmental obstacles of the competitive sports and public sports in Taiwan. Journal of Pintung University Physical Education, 2, 161-173.
Cornelissen, V., Verheyden, B., Aubert, A., & Fagard, R. (2010). Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. Journal of Human Hypertension, 24(3), 175-182.
Delgado-Gonzalo, R., Parak, J., Tarniceriu, A., Renevey, P., Bertschi, M., & Korhonen, I. (2015). Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE.
Dondzila, C. J., Lewis, C., Lopez, J. R., & Parker, T. (2018). Congruent accuracy of wrist-worn activity trackers during controlled and free-living conditions. International Journal of Exercise Science, 11(7), 575-584.
Dooley, E. E., Golaszewski, N. M., & Bartholomew, J. B. (2017). Estimating accuracy at exercise intensities: A comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR mHealth and uHealth, 5(3).
Dorgo, S., Robinson, K. M., & Bader, J. (2009). The effectiveness of a peer‐mentored older adult fitness program on perceived physical, mental, and social function. Journal of the American Association of Nurse Practitioners, 21(2), 116-122.
El-Amrawy, F., & Nounou, M. I. (2015). Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Healthcare Informatics Research, 21(4), 315-320.
Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159.
Fang, I. Y., Ho, H. H., & Chang, S. H. (2014). Analysis for exercise strategy of aging in place: The case study of the Finland exercise promotion project for older adults. Quarterly of Chinese Physical Education, 28(2), 137-144.
Fokkema, T., Kooiman, T. J., Krijnen, W. P., VAN, C. D. S., & DE, M. G. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Medicine and Science in Sports and Exercise, 49(4), 793-800.
Freedson, P. S., & Miller, K. (2000). Objective monitoring of physical activity using motion sensors and heart rate. Research Quarterly for Exercise and Sport, 71(sup2), 21-29.
Giannakidou, D. M., Kambas, A., Ageloussis, N., Fatouros, I., Christoforidis, C., Venetsanou, F., . . . Taxildaris, K. (2012). The validity of two Omron pedometers during treadmill walking is speed dependent. European Journal of Applied Physiology, 112(1), 49-57.
Gillinov, S., Etiwy, M., Wang, R., Blackburn, G., Phelan, D., Gillinov, A. M., . . . Desai, M. Y. (2017). Variable accuracy of wearable heart rate monitors during aerobic exercise. Medicine and Science in Sports and Exercise, 49(8), 1697-1703.
Guest, A., & Apgar, M. (2002). Promoting and prescribing exercise for the elderly. American Family Physician, 65, 3.
Heart, T., & Kalderon, E. (2013). Older adults: Are they ready to adopt health-related ICT? International Journal of Medical Informatics, 82(11), e209-e231.
Huang, H. F., & Zhang, J. R. (2016). An investigation on requirements of wearable products for middle-aged and elderly person. Journal of Arts, 5, 89-111.
Kang, J. T., Hsiao, H. J., Lin, C. M., & Wu, M. H. (2016). Explore the accuracy of health monitor in aging population through wearable device. Journal of National Cheng Kung University Physical Education Research, 49(1), 14-31.
Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155-163. doi:10.1016/j.jcm.2016.02.012
Lai, S. T. (2016). Strengthen health bracelet to plan and design the seniors health management app. Journal of Information Communication and Technology Audition, 33, 116-128.
Laukkanen, R. M., & Virtanen, P. K. (1998). Heart rate monitors: state of the art. Journal of Sports Sciences, 16(sup1), 3-7.
Livingstone, M., Coward, W., Prentice, A. M., Davies, P., Strain, J. J., McKenna, P. G., . . . Kerr, M. (1992). Daily energy expenditure in free-living children: comparison of heart-rate monitoring with the doubly labeled water (2H2 (18) O) method. The American Journal of Clinical Nutrition, 56(2), 343-352.
Makrides, L., Heigenhauser, G., & Jones, N. L. (1990). High-intensity endurance training in 20-to 30-and 60-to 70-yr-old healthy men. Journal of Applied Physiology, 69(5), 1792-1798.
Malbut, K. E., Dinan, S., & Young, A. (2002). Aerobic training in the ‘oldest old’: the effect of 24 weeks of training. Age and Ageing, 31(4), 255-260.
McMahon, S. K., Lewis, B., Oakes, M., Guan, W., Wyman, J. F., Rothman, A., & uHealth. (2016). Older adults’ experiences using a commercially available monitor to self-track their physical activity. JMIR mHealth and uHealth, 4(2).
Mercer, K., Giangregorio, L., Schneider, E., Chilana, P., Li, M., & Grindrod, K. (2016). Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: a mixed-methods evaluation. JMIR mHealth and uHealth, 4(1).
Michaelis, J. R., Rupp, M. A., Kozachuk, J., Ho, B., Zapata-Ocampo, D., McConnell, D. S., & Smither, J. A. (2016). Describing the User Experience of Wearable Fitness Technology through Online Product Reviews. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
Middelweerd, A., van der Laan, D. M., van Stralen, M. M., Mollee, J. S., Stuij, M., te Velde, S. J., & Brug, J. (2015). What features do Dutch university students prefer in a smartphone application for promotion of physical activity? A qualitative approach. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 31.
National Development Council. (2016). Estimation of population in ROC from 2016-2066. Taipei
Ng, C. L., Goh, S.-Y., Malhotra, R., Østbye, T., & Tai, E. S. (2010). Minimal difference between aerobic and progressive resistance exercise on metabolic profile and fitness in older adults with diabetes mellitus: a randomised trial. Journal of Physiotherapy, 56(3), 163-170.
Ng, K., Tynjälä, J., & Kokko, S. (2017). Ownership and use of commercial physical activity trackers among Finnish adolescents: cross-sectional study. JMIR mHealth and uHealth, 5(5).
Parak, J., & Korhonen, I. (2014). Evaluation of wearable consumer heart rate monitors based on photopletysmography. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE.
Parak, J., Uuskoski, M., Machek, J., Korhonen, I., & uHealth. (2017). Estimating heart rate, energy expenditure, and physical performance with a wrist photoplethysmographic device during running. JMIR mHealth and uHealth, 5(7).
Pinheiro Volp, A., Esteves de Oliveira, F., Duarte Moreira Alves, R., Esteves, E., & Bressan, J. (2011). Energy expenditure: components and evaluation methods. Nutricion Hospitalaria, 26(3).
Plews, D. J., Scott, B., Altini, M., Wood, M., Kilding, A. E., & Laursen, P. B. (2017). Comparison of Heart Rate Variability Recording With Smart Phone Photoplethysmographic, Polar H7 Chest Strap and Electrocardiogram Methods. International Journal of Sports Physiology and Performance, 1-17.
Prosser, L. A., Stanley, C. J., Norman, T. L., Park, H. S., & Damiano, D. L. (2011). Comparison of elliptical training, stationary cycling, treadmill walking and overground walking. Electromyographic patterns. Gait & posture, 33(2), 244-250.
Rasche, P., Wille, M., Theis, S., Schäefer, K., Schlick, C. M., & Mertens, A. (2015). Activity tracker and elderly. Paper presented at the Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on.
Reid, K. J., Baron, K. G., Lu, B., Naylor, E., Wolfe, L., & Zee, P. C. (2010). Aerobic exercise improves self-reported sleep and quality of life in older adults with insomnia. Sleep Medicine, 11(9), 934-940.
Sallis, J. F. (2010). Measuring physical activity: practical approaches for program evaluation in Native American communities. Journal of Public Health Management and Practice: JPHMP, 16(5), 404.
Sarcona, A., Kovacs, L., Wright, J., & Williams, C. (2017). Differences in eating behavior, physical activity, and health-related lifestyle choices between users and nonusers of mobile health apps. American Journal of Health Education, 48(5), 298-305.
Sartor, F., Gelissen, J., van Dinther, R., Roovers, D., Papini, G. B., & Coppola, G. (2018). Wrist-worn optical and chest strap heart rate comparison in a heterogeneous sample of healthy individuals and in coronary artery disease patients. BMC Sports Science, Medicine and Rehabilitation, 10, 10. doi:10.1186/s13102-018-0098-0
Schrack, J. A., Zipunnikov, V., Goldsmith, J., Bandeen-Roche, K., Crainiceanu, C. M., & Ferrucci, L. (2014). Estimating energy expenditure from heart rate in older adults: A case for calibration. PLoS One, 9(4), e93520.
Shih, P. C., Han, K., Poole, E. S., Rosson, M. B., & Carroll, J. M. (2015). Use and adoption challenges of wearable activity trackers. Paper presented at the IConference 2015 Proceedings.
Singh, A. K., Farmer, C., Van Den Berg, M. L., Killington, M., & Barr, C. J. (2016). Accuracy of the FitBit at walking speeds and cadences relevant to clinical rehabilitation populations. Disability and Health Journal, 9(2), 320-323.
Spierer, D. K., Rosen, Z., Litman, L. L., & Fujii, K. (2015). Validation of photoplethysmography as a method to detect heart rate during rest and exercise. Journal of Medical Engineering & Technology, 39(5), 264-271.
Stahl, S. E., An, H.-S., Dinkel, D. M., Noble, J. M., & Lee, J.-M. (2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport & Exercise Medicine, 2(1), e000106.
Stanish, H. I., & Temple, V. A. (2012). Efficacy of a peer‐guided exercise programme for adolescents with intellectual disability. Journal of Applied Research in Intellectual Disabilities, 25(4), 319-328.
Strath, S. J., Swartz, A. M., Bassett Jr, D. R., O'Brien, W. L., King, G. A., & Ainsworth, B. E. (2000). Evaluation of heart rate as a method for assessing moderate intensity physical activity. Medicine and Science in Sports and Exercise, 32(9 Suppl), S465-470.
Sylvia, L. G., Bernstein, E. E., Hubbard, J. L., Keating, L., & Anderson, E. J. (2014). A practical guide to measuring physical activity. Journal of the Academy of Nutrition and Dietetics, 114(2), 199.
Takacs, J., Pollock, C. L., Guenther, J. R., Bahar, M., Napier, C., & Hunt, M. A. (2014). Validation of the Fitbit One activity monitor device during treadmill walking. Journal of Science and Medicine in Sport, 17(5), 496-500.
Tedesco, S., Barton, J., & O’Flynn, B. (2017). A review of activity trackers for senior citizens: Research perspectives, commercial landscape and the role of the insurance industry. Sensors, 17(6), 1277.
Valenti, G., & Westerterp, K. R. (2013). Optical heart rate monitoring module validation study. Paper presented at the Consumer Electronics (ICCE), 2013 IEEE International Conference on.
Van Andel, J., Ungureanu, C., Aarts, R., Leijten, F., & Arends, J. (2015). Using photoplethysmography in heart rate monitoring of patients with epilepsy. Epilepsy & Behavior, 45, 142-145.
Wahl, Y., Düking, P., Droszez, A., Wahl, P., & Mester, J. (2017). Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Frontiers in Physiology, 8, 725.
Wallen, M. P., Gomersall, S. R., Keating, S. E., Wisløff, U., & Coombes, J. S. (2016). Accuracy of heart rate watches: Implications for weight management. PLoS One, 11(5), e0154420.
Wang, R., Blackburn, G., Desai, M., & et al. (2017). Accuracy of wrist-worn heart rate monitors. JAMA Cardiology, 2(1), 104-106. doi:10.1001/jamacardio.2016.3340
Won, H.-J., & Hong, E. (2015). The development of sport policy and management in South Korea. International Journal of Sport Policy and Politics, 7(1), 141-152.
Yang, R., Shin, E., Newman, M. W., & Ackerman, M. S. (2015). When fitness trackers don't'fit': end-user difficulties in the assessment of personal tracking device accuracy. Paper presented at the Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
Zou, G. (2012). Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. Journal of Statistics in Medicine, 31(29), 3972-3981.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-02-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-02-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw