系統識別號 U0026-1302201909133900
論文名稱(中文) 自動化地表電場計研製與應用
論文名稱(英文) The Development and Application of the Automated Field Mill at ground
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 107
學期 1
出版年 108
研究生(中文) 王宜傑
研究生(英文) Yi-Chieh Wang
學號 LA6051069
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 指導教授-陳炳志
中文關鍵字 大氣電場  電場量測儀  雷暴 
英文關鍵字 Vertical Electric Field  Field Mill  Thunderstorm 
中文摘要 大氣因受到太陽輻射,使得大氣與地表間存在電位差進而形成大氣背景電場,而影響大氣背景電場較為劇烈的電場,稱為地表垂直變化電場。已有的研究顯示雷暴與地震活動,都會使地表電場產生顯著的變化,分析其變化有助於瞭解劇烈天氣與岩石圈活動,並且有災害預警的應用價值。本論文發展了一套自製的電場電位儀,藉由改變垂直電場的感應面積,形成感應電流,並藉由電路量化數值而得到電場值。另外使用系統整合載板與中央微處理器,使其可獨立佈放進行地表電場量測,並且透過電信網路即時收集數據,以進一步瞭解劇烈天氣以及地震活動與地表電場變化的關連性。為了統計上的可信度與瞭解電場變化對空間的影響,儀器需要架設於人為與環境不易干擾的地點,並且於劇烈天氣與地震活動敏感位置多點架設,以分析其電場變化對空間的影響。由於電場校正籠大小的限制,且因電場電位儀的接地外殼會對於電場量測值產生影響,因此電場量測儀系統研製完成後,為了確保量測準確性,我們使用可控制電場強度之校正籠,且透過SIMION的電場模擬,成功的完成實際量測值與真實電場值的校正。
英文摘要 There is a potential difference between the upper atmosphere and the earth's surface, and this potential difference forms an atmospheric background electric field. The ground electric field varies not only due to the variation of the fair-weather electric field but also driven by the thunderstorm system and the seismic activities in the lithosphere. Therefore, the monitoring on the ground electric field can not only have the values on the science, but also the high potential on the applications of the disaster prevention.
This work focuses on the development of a home-made electric field mill. The new design of the electronics and processing system of the electric field meter is greatly miniaturized with low power consumption and light weight. Furthermore, the measurement data can be delivered out with the assistance of the telecommunication network, therefore this electric field mill can be deployed and works for a long time independently without extra power and communication lines. After the electric field mill is fabricated and tested, it has been placed in the electric field cage for the calibration with the simulation by SIMION.
In three long-term field experiments, the signatures of the end of storm oscillations and Carnegie curves were observed.

論文目次 摘要 I
Extended Abstract II
致謝 VII
圖目錄 XI
第1章 簡介 1
1.1 大氣背景電場 1
1.1.1 晴天電場 3
1.1.2 地表垂直變化電場 4
1.2 地表垂直變化電場的成因 4
1.2.1 雷暴系統 4
1.2.2 岩石圈板塊的運動現象 6
1.3 研究動機 8
1.4 論文結構 9
第2章 靜電場量測儀器與原理介紹 10
2.1 常見的靜電場量測方式 10
2.1.1 電位型靜電場量測儀 10
2.1.2 電流型靜電場量測儀器 11
2.2 電場量測儀器原理 12
第3章 自動化電場量測儀器設計 14
3.1 電場量測儀Field Mill 15
3.1.1 機械結構 15
3.1.2 電路系統與訊號處理 18
3.2 性能估算 24
第4章 中央微處理器與通訊系統 26
4.1 樹莓派處理器Raspberry Pi 3 Model B 26
4.1.1 4G LTE通訊系統 28
4.1.2 資料封包與無線上傳 29
4.2 系統整合載板 31
4.2.1 溫溼度感測器 31
4.2.2 分壓電路與電壓監測系統 32
4.2.3 電力系統 33
4.2.4 電源與電場量測儀連結端 34
4.2.5 樹苺派GPIO連接端 36
4.3 資料取樣 36
4.4 電力功耗 37
第5章 電場量測儀器校正與戶外實測結果分析 39
5.1 電場模擬與校正 39
5.1.1 電場校正環境 40
5.1.2 SIMION電場模擬 42
5.1.3 電場量測儀器測試與校正 46
5.2 電場量測儀戶外架設與結果分析 47
5.2.1 儀器架設 48
5.2.2 第一次戶外電場量測 52
5.2.3 第二次戶外電場量測 54
5.2.4 第三次戶外電場量測 56
第6章 結論與未來展望 58
6.1 結論 58
6.2 未來展望 59
參考文獻 61

參考文獻 Foppiano, A. J., Ovalle, E. M., Bataille, K., & Stepanova, M. (2008). Ionospheric evidence of the May 1960 earthquake over Concepción?. Geofísicainternacional, 47, 179-183.
Gish, O. H. (1944). Evaluation and interpretation of the columnar resistance of the atmosphere. Terrestrial Magnetism and Atmospheric Electricity, 49, 159-168.
Gish, O. H. (1951). Universal aspects of atmospheric electricity. In Compendium of meteorology (pp. 101-119). American Meteorological Society, Boston, MA.
Harrison, R. G. (2004). Long-term measurements of the global atmospheric electric circuit at Eskdalemuir, Scotland, 1911–1981. Atmospheric research, 70, 1-19.
Harrison, R. G. (2013), The Carnegie curve, Surveys in Geophysics, 34, 209-232.
Kuo, C. L., Huba, J. D., Joyce, G., & Lee, L. C. (2011). Ionosphere plasma bubbles and density variations induced by pre‐earthquake rock currents and associated surface charges. Journal of Geophysical Research: Space Physics, 116(A10).
Kuo, C. L., Lee, L. C., & Huba, J. D. (2014). An improved coupling model for the lithosphere‐atmosphere‐ionosphere system. Journal of Geophysical Research: Space Physics, 119, 3189-3205.
Karlberg, G. S., Rossmeisl, J., & Nørskov, J. K. (2007). Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Physical Chemistry Chemical Physics, 9, 5158-5161.
Krehbiel, P. R. (1986). The electrical structure of thunderstorms. The Earth’s electrical environment, The National Academies Press, 90-113.
Moore, G. W. (1964). Magnetic disturbances preceding the 1964 Alaska earthquake. Nature, 203, 508.
Pulinets, S., & Ouzounov, D. (2011). Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–An unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, 41, 371-382.
Singh, D. K., Singh, R. P., & Kamra, A. K. (2004). The electrical environment of the Earth's atmosphere: A review. Space Science Reviews, 113, 375-408.
Siingh, D., Singh, R. P., Kamra, A. K., Gupta, P. N., Singh, R., Gopalakrishnan, V., & Singh, A. K. (2005). Review of electromagnetic coupling between the Earth's atmosphere and the space environment. Journal of atmospheric and solar-terrestrial physics, 67, 637-658.
Simpson, G. (1906). Atmospheric Electricity in High Latitudes, Philos. Trans. Roy. Soc. Lond. 205, 61–97.
Tant, P., Bolsens, B., Sels, T., Van Dommelen, D., Driesen, J., & Belmans, R. (2007). Design and application of a field mill as a high-voltage DC meter. IEEE Transactions on Instrumentation and Measurement, 56, 1459-1464.
Wormell, T. W. (1930). Vertical electric currents below thunderstorms and showers. Proc. R. Soc. Lond. A, 127, 567-590.
Wåhlin, L. (1986). Atmospheric Electrostatics: Chapter 6 Instrumentation, John Wiley & Sons, Inc., New York.
Yu, Z., Peng, Z., Liu, P., & Wu, X. (2006). The influence of charged sand particles on the external insulation performance of composite insulators in sandstorm condition. In Properties and applications of Dielectric Materials, 2006. 8th International Conference on (pp. 542-545). IEEE.
  • 同意授權校內瀏覽/列印電子全文服務,於2021-02-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-02-14起公開。

  • 如您有疑問,請聯絡圖書館