進階搜尋


下載電子全文  
系統識別號 U0026-1302201808305000
論文名稱(中文) 手指按壓評估和訓練系統對於中風病人的手部復健成效
論文名稱(英文) Hand Rehabilitation of Stroke Patients Using Digit Pressing Evaluation and Training System (PETS)
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 錢振愷
研究生(英文) Chen-Kai Chien
學號 p86031147
學位類別 碩士
語文別 英文
論文頁數 89頁
口試委員 指導教授-蘇芳慶
口試委員-郭立杰
口試委員-徐秀雲
口試委員-林倩如
口試委員-揭小鳳
中文關鍵字 力量控制  手指獨立性  多指按壓  中風復健 
英文關鍵字 Force control  Digit independence  Multi-digit pressing  Stroke rehabilitation 
學科別分類
中文摘要 中風病人可能會因為感覺受損、肌力不足、以及不正常協同動作等因素而影響手指施力與獨立控制之表現。但至今尚未有研究去探討中風病人經過訓練後對於手指相關控制之治療成效,而且其成效與手部功能之間的關聯性亦尚未釐清。

在本研究中,將利用「手指按壓評估及訓練系統」來進行手指施力和獨立控制之評估與訓練。共徵招27位健康受測者和10位中風病人參與本實驗,並對手指施力控制、手指獨立性、手部功能性表現之關聯性進行研究。其中,7位中風病人及7位年齡配對之健康受測者的資料將用於訓練成效之評估。

結果顯示手指施力控制、最大握力與功能性表現之間存在顯著的正相關。此外,病人之施力與獨立控制、最大握力、手指感覺功能、手部功能性表現皆差於健康受測者之表現。關於中風病人的訓練成效,手指施力控制、手指感覺、手部功能性表現均呈現進步的趨勢,手指獨立性則在部分多指組合的評估中有進步的趨勢。整體而言,多指按壓訓練可能改善中風病人的手部表現。但本研究礙於病人樣本數過小,且病人之間變異性大。這些因素可能影響統計學上之顯著性差異。
英文摘要 The performance of hand such as digit force control and digit independence was influenced due to impaired sensation, insufficient strength, and abnormal synergy pattern on patients after stroke. Previous studies showed lower digit independence and lower strength on affected hand of stroke compared to the control group. However, these literatures didn’t study the training effects on digit force control and digit independence for patients after stroke. The relationship among digit force control, digit independence, and hand function was still unclear.

In current study, RMSD and k value calculated from FFT of PETS represented digit force control and digit independence respectively. Multi-digit training with PETS was an intervention for all subjects in the experiment. Twenty seven health controls and ten patients after stroke were recruited to study the relationship among digit force control, digit independence, and hand function. The data of seven patients and seven age-matched controls were analyzed to reveal training effects.

The resulted showed digit force control had a significant positive relationship (p-value < .01) with grasp force and hand function. Patients after stroke showed the poor performance of digit force control, digit independence, digit sensation, and hand function than controls. Besides, grasp force of stroke was smaller than controls as well. In the training effects, patients after stroke showed improvement on RMSD, 2-PD, grasp force, B&BT, and ARAT. k value in stroke increased in some combinations of multi-digit. To sum up, multi-digit training with PETS might improve digit force control and digit independence on patients after stroke.

The small sample size of stroke was the limitation in current study. The insufficient number of stroke and high variation within patients might cause no significant change on effects after multi-digit training.
論文目次 摘要...................I
Abstract..................II
致謝..................IV
Contents.................V
Index of tables...............VIII
Index of figures..............IX
Abbreviation list..............XII
Chapter 1 Introduction.............1
1.1 Background...............1
1.2 The abnormal synergy pattern in stroke…......2
1.3 The sensorimotor deficit in stroke.......4
1.4 The digit force control deficit in stroke......6
1.5 The digit applied force and digit independence...8
1.6 Evaluation about multi-digit manipulation......9
1.7 The application of biofeedback technique......11
1.8 Biofeedback intervention for stroke.......12
1.9 Motivation................13
1.10 Special aims...............13
Chapter 2 Materials and methods.........15
2.1 Subjects................15
2.2 Equipment...............17
2.2.1 Pressing Evaluation and Training System (PETS)..17
2.2.2 Visual feedback system..........19
2.3 Experimental setting and procedure........21
2.3.1 The experimental setting..........21
2.3.2 The experimental procedure..........22
2.4 Evaluation................25
2.4.1 Strength test of clinical assessments.....25
2.4.1.1 Power grasp.............25
2.4.2 Sensory test of clinical assessments......26
2.4.2.1 Semmes-Weinstein test (SWM).........26
2.4.2.2 Two-point Discrimination (2-PD).......28
2.4.3 Hand function test of clinical assessments....29
2.4.3.1 Action Research Arm Test (ARAT).......29
2.4.3.2 Box and Blocks Test (B&BT)........31
2.4.4 PETS evaluation – FTT...........33
2.5 Training program..............35
2.6 Parameters about PETS evaluation........38
2.6.1 PETS evaluation – RMSD..........38
2.6.2 PETS evaluation – k value.........39
2.7 Statistical analysis............41
Chapter 3 Results.................42
3.1 Correlation between PETS and clinical assessments.................42
3.1.1 Correlation between RMSD and clinical assessments.................42
3.1.2 Correlation between k value and clinical assessments.................44
3.2 Difference about various kinds of combinations of two digits..................46
3.2.1 Difference about various combinations of digits in RMSD..................46
3.2.2 Difference about various combinations of digits in k value...................48
3.3 Training effect after multi-digit training with PETS..................50
3.3.1 Effect of training on RMSD..........50
3.3.2 Effect of training on k value.........54
3.3.3 Effect of training on clinical assessments....60
3.3.3.1 Effect of training on SWM.........60
3.3.3.2 Effect of training on 2-PD........63
3.3.3.3 Effect of training on power grasp.......67
3.3.3.4 Effect of training on B&BT........68
3.3.3.5 Effect of training on ARAT........70
Chapter 4 Discussion..............71
4.1 Correlation between PETS and clinical assessments...71
4.2 Various kinds of multi-digit combinations.....74
4.3 Training effects after multi-digit training.....76
4.3.1 Digit force control and digit independence....76
4.3.2 Performance about sensation, strength, and hand function..................77
4.4 Limitation................78
Chapter 5 Conclusion..............79
References................81
參考文獻 1. McGrew, W.C., Chimpanzee material culture: implications for human evolution. Cambridge University Press, 1992.
2. Krishnamurthi, R.V., et al., Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health, 2013. 1(5): p. 259-281.
3. Smajlović, D., Strokes in young adults: epidemiology and prevention. Vascular health and risk management, 2015. 11: p. 157-164.
4. Ohn, S.H., et al., Measurement of synergy and spasticity during functional movement of the post-stoke hemiplegic upper limb. Journal of electromyography and kinesiology, 2013. 23(2): p. 501-507.
5. Kung, P.C., C.C. Lin, and M.S. Ju, Neuro-rehabilitation robot-assisted assessments of synergy patterns of forearm, elbow and shoulder joints in chronic stroke patients. Clinical biomechanics (Bristol, Avon), 2010. 25(7): p. 647-654.
6. Kandel, E.R., J.H. Schwartz, and T.M. Jessell, Principles of neural science. McGraw-Hill New York, 2000. Vol. 4.
7. Nowak, D.A., S. Glasauer, and J. Hermsdörfer, How predictive is grip force control in the complete absence of somatosensory feedback? Brain, 2004. 127(1): p. 182-192.
8. Carey, L.M., Somatosensory loss after stroke. Critical Reviews™ in Physical and Rehabilitation Medicine, 1995. 7(1).
9. Connell, L.A., Sensory impairment and recovery after stroke. 2007, University of Nottingham.
10. Kim, J.S., Patterns of sensory abnormality in cortical stroke Evidence for a dichotomized sensory system. Neurology, 2007. 68(3): p. 174-180.
11. Riddoch, M.J., G.W. Humphreys, and A. Bateman, Stroke: stroke issues in recovery and rehabilitation. Physiotherapy, 1995. 81(11): p. 689-694.
12. Ward, N.S., et al., Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain, 2006. 129(3): p. 809-819.
13. Newton, J.M., et al., Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain, 2006. 129(7): p. 1844-1858.
14. Chouinard, P.A., G. Leonard, and T. Paus, Changes in effective connectivity of the primary motor cortex in stroke patients after rehabilitative therapy. Experimental neurology, 2006. 201(2): p. 375-387.
15. Stinear, C.M., et al., Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain, 2007. 130(1): p. 170-180.
16. Johansen‐Berg, H., Functional imaging of stroke recovery: what have we learnt and where do we go from here? International journal of stroke, 2007. 2(1): p. 7-16.
17. Cramer, S.C., et al., A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 1997. 28(12): p. 2518-2527.
18. Calautti, C. and J.-C. Baron, Functional neuroimaging studies of motor recovery after stroke in adults a review. Stroke, 2003. 34(6): p. 1553-1566.
19. Schaechter, J.D., Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress in neurobiology, 2004. 73(1): p. 61-72.
20. Jack, D., et al., Virtual reality-enhanced stroke rehabilitation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2001. 9(3): p. 308-318.
21. Nudo, R.J., et al., Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 1996. 272(5269): p. 1791-1794.
22. Jenkins, W.M. and M.M. Merzenich, Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Progress in brain research, 1987. 71: p. 249-266.
23. Yekutiel, M. and E. Guttman, A controlled trial of the retraining of the sensory function of the hand in stroke patients. Journal of Neurology, Neurosurgery & Psychiatry, 1993. 56(3): p. 241-244.
24. Pendleton, H.M. and W. Schultz-Krohn, Pedretti's occupational therapy: practice skills for physical dysfunction. 2013: Elsevier Health Sciences.
25. Térémetz, M., et al., A novel method for the quantification of key components of manual dexterity after stroke. Journal of neuroengineering and rehabilitation, 2015. 12:64.
26. Zatsiorsky, V.M. and M.L. Latash, Multifinger prehension: an overview. Journal of motor behavior, 2008. 40(5): p. 446–476.
27. Maier, M.A. and M.C. Hepp-Reymond, EMG activation patterns during force production in precision grip. I. Contribution of 15 finger muscles to isometric force. Experimental brain research, 1995. 103(1): p. 108–122.
28. Renner, C.I., P. Bungert-Kahl, and H. Hummelsheim, Change of strength and rate of rise of tension relate to functional arm recovery after stroke. Archives of physical medicine and rehabilitation, 2009. 90(9): p. 1548–1556.
29. Ehrsson, H.H., Cortical activity in precision- versus power-grip tasks: an fMRI study. Journal of neurophysiology, 2000. 83(1): p. 528–536.
30. Nowak, D.A., S. Glasauer, and J. Hermsdörfer, Force control in object manipulation–a model for the study of sensorimotor control strategies. Neuroscience and biobehavioral reviews, 2013. 37(8): p. 1578–1586.
31. Häger-Ross, C. and M.H. Schieber, Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. The Journal of neuroscience, 2000. 20(22): p. 8542–8550.
32. Lang, C.E. and M.H. Schieber, Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. Journal of neurophysiology, 2004. 91(4): p. 1722–1733.
33. Repp, B.H. and Y.H. Su, Sensorimotor synchronization: a review of recent research (2006–2012). Psychonomic bulletin & review, 2013. 20(3): p. 403–452.
34. Andres, F.G. and C. Gerloff, Coherence of sequential movements and motor learning. Journal of clinical neurophysiology, 1999. 16(6): p. 520–527.
35. Catalan, M.J., et al., The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain. 1998. 121(Pt 2): p. 253–264.
36. Corcos, D.M., et al., Electromechanical delay: an experimental artifact. Journal of Electromyography and Kinesiology, 1992. 2(2): p. 59-68.
37. Kang, N. and J.H. Cauraugh, Force Control in Chronic Stroke. Neuroscience Biobehavioral Reviews, 2015. 52: p. 38-48.
38. Elliott, D., et al., Goal-directed aiming: two components but multiple processes. Psychological bulletin, 2010. 136(6): p. 1023-1044.
39. Cauraugh, J.H., et al., Long-term rehabilitation for chronic stroke arm movements: a randomized controlled trial. Clinical rehabilitation, 2011. 25(12): p. 1086-1096.
40. Patten, C., Reeducating muscle force control in older persons through strength training. Topics in Geriatric Rehabilitation, 2000. 15(3): p. 47-59.
41. Chiu, H.Y., et al., Setup of a novel biofeedback prototype for sensorimotor control of the hand and preliminary application in patients with peripheral nerve injuries. Physical therapy, 2013. 93(2): p. 168-78.
42. Hsu, H.Y., et al., Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients. Journal of neuroengineering and rehabilitation, 2012. 9(1): p. 26.
43. Kim, Y., W.S. Kim, and B. Yoon, The effect of stroke on motor selectivity for force control in single- and multi-finger force production tasks. NeuroRehabilitation, 2014. 34(3): p. 429-35.
44. Seo, N.J., et al., Use of visual force feedback to improve digit force direction during pinch grip in persons with stroke: a pilot study. Arch Phys Med Rehabil, 2011. 92(1): p. 24-30.
45. Stepp, C.E., Q. An, and Y. Matsuoka, Repeated training with augmentative vibrotactile feedback increases object manipulation performance. PloS one, 2012. 7(2): p. e32743.
46. Merians, A.S., et al., Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabilitation and Neural Repair, 2006. 20(2): p. 252-267.
47. Kim, Y., et al., Difference of motor overflow depending on the impaired or unimpaired hand in stroke patients. Human movement science, 2015. 39: p. 154-162.
48. Schieber, M. H., et al., Selective activation of human finger muscles after stroke or amputation. Advances in Experimental Medicine and Biology, 2009. 629: p. 559-575.
49. Shim, J.K., et al., Tactile feedback plays a critical role in maximum finger force production. J Biomech, 2012. 45(3): p. 415-20.
50. Blennerhassett, J.M., L.M. Carey, and T.A. Matyas, Grip force regulation during pinch grip lifts under somatosensory guidance: comparison between people with stroke and healthy controls. Arch Phys Med Rehabil, 2006. 87(3): p. 418-29.
51. Seo, N.J., W.Z. Rymer, and D.G. Kamper, Altered digit force direction during pinch grip following stroke. Exp Brain Res, 2010. 202(4): p. 891-901.
52. Lang, C.E. and M.H. Schieber, Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. Journal of neurophysiology, 2004. 92(5): p. 2802-2810.
53. Li, Z.M., M. Latash, and V. Zatsiorsky, Force sharing among fingers as a model of the redundancy problem. Experimental brain research, 1998. 119(3): p. 276-286.
54. Wu, Y.H., et al., Learning to Combine High Variability with High Precision: Lack of Transfer to a Different Task. Journal of motor behavior, 2015. 47(2): p. 153-165.
55. Park, J., et al., Changes in multifinger interaction and coordination in Parkinson's disease. Journal of neurophysiology, 2012. 108(3): p. 915-924.
56. Mathiowetz, V., et al., Adult norms for the Box and Block Test of manual dexterity. American Journal of Occupational Therapy, 1985. 39(6): p. 386-391.
57. Raghavan, P., et al., Patterns of impairment in digit independence after subcortical stroke. Journal of neurophysiology, 2006. 95(1): p. 369-378.
58. Tate, J.J. and C.E. Milner, Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in patients: a systematic review. Physical Therapy, 2010. 90(8): p. 1123-1134.
59. Giggins, O.M., U.M. Persson, and B. Caulfield, Biofeedback in rehabilitation. J Neuroeng Rehabil, 2013. 10: p. 60.
60. Merians, A.S., et al., Virtual reality–augmented rehabilitation for patients following stroke. Physical therapy, 2002. 82(9): p. 898-915.
61. Crosbie, J., et al., Virtual reality in the rehabilitation of the upper limb after hemiplegic stroke: a randomised pilot study. Proc. 7th ICDVRAT with ArtAbilitation, 2008. p. 229-235.
62. Quaney, B.M., et al., Impaired grip force modulation in the ipsilesional hand after unilateral middle cerebral artery stroke. Neurorehabil Neural Repair, 2005. 19(4): p. 338-349.
63. Levin, M. F., Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain, 1996. 119: p. 281-293.
64. Li, S., et al., The effects of stroke and age on finger interaction in multi-finger force production tasks. Clinical Neurophysiology, 2003. 114(9): p. 1646-1655.
65. McDonnell, M.N., et al., Impairments in precision grip correlate with functional measures in adult hemiplegia. Clinical Neurophysiology, 2006. 117(7): p. 1474-1480.
66. Dovat, L., et al., A technique to train finger coordination and independence after stroke. Disabil Rehabil Assist Technol, 2010. 5(4): p. 279-287.
67. Radomski, M.V. and C.A.T. Latham, Occupational therapy for physical dysfunction. 2008: Lippincott Williams & Wilkins.
68. Tsoupikova, D., et al., Virtual immersion for post-stroke hand rehabilitation therapy. Biomedical Engineering Society, 2015. 43(2): p. 467-477.
69. Nakayama, H., et al., Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Archives of physical medicine and rehabilitation, 1994. 75(4): p. 394-398.
70. Wilhelm, L.A., et al., Finger enslaving in the dominant and non-dominant hand. Human movement science, 2014. 33: p. 185-193.
71. Shinohara, M., et al., Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. Journal of applied physiology (Bethesda, Md. : 1985), 2003. 94(1): p. 259-270.
72. Martin, J.R., M.L. Latash, and V.M. Zatsiorsky, Interaction of finger enslaving and error compensation in multiple finger force production. Experimental brain research, 2009. 192(2): p. 293-298.
73. Li, S., M.L. Latash, and V.M. Zatsiorsky, Finger interaction during multi-finger tasks involving finger addition and removal. Experimental brain research, 2003. 150(2): p. 230-236.
74. Zimmerman, S.D., et al., Age and training alter collagen characteristics in fast- and slow-twitch rat limb muscle. Journal of applied physiology (Bethesda, Md. : 1985), 1993. 75(4): p. 1670-1674.
75. Larsson, L. and T. Ansved, Effects of ageing on the motor unit. Progress in neurobiology, 1995. 45(5): p. 397-458.
76. Hamada, Y., H. Kado, and R. Suzuki, The temporal profile of interactions between sensory information from both hands in the secondary somatosensory cortex. Clinical neurophysiology, 2001. 112(7): p. 1326-1333.
77. Santello, M. and C.E. Lang, Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic. Frontiers in human neuroscience, 2015. 8: 1050.
78. Shim J.K., et al., Adjustments of prehension synergies in response to self-triggered and experimenter-triggered load and torque perturbations. Experimental brain research, 2006. 175(4): p. 641–653.
79. Lum, P.S., et al., Robotic approaches for rehabilitation of hand function after stroke. American journal of physical medicine & rehabilitation, 2012. 91(11 Suppl 3): S242-S254.
80. Duncan, D.W., et al., Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Archives of physical medicine and rehabilitation, 2003. 84(7): p. 950-963.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-02-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw