進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1302201713344400
論文名稱(中文) 電漿子光學元件與應用研究 – 磁透鏡、邏輯閘與微型電子加速器件
論文名稱(英文) Plasmonic Devices and Applications – Magnetic Lenses, Logic Gates, and Electron Accelerators
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 105
學期 1
出版年 106
研究生(中文) 吳祥豪
研究生(英文) Hsiang-Hao Wu
學號 l78991089
學位類別 博士
語文別 英文
論文頁數 71頁
口試委員 指導教授-藍永強
口試委員-張世慧
召集委員-溫添進
口試委員-劉文仁
口試委員-詹明哲
中文關鍵字 電漿子光學  表面電漿波  磁透鏡  邏輯閘  電子加速器 
英文關鍵字 Plasmonic  Surface plasmon  Magnetic lens  All-optical logic gates  Electron accelerators 
學科別分類
中文摘要   本論文主要是使用VORPAL來進行研究。我們將透過模擬與理論解析探討電漿子光學元件與應用,包括三個部份:磁透鏡、邏輯閘和電子加速器。在本研究中所有元件都是由金屬-介電質-金屬(metal-dielectric-metal, MDM)或類MDM所構成。

磁透鏡:
  利用半導體-玻璃所構成的陣列波導結構,外加磁場使半導體內部自由電子與磁場交互作用後產生迴旋頻率,利用磁場強度與距離成平方反比的關係,使得不同距離的半導體有不同的迴旋頻率而達到半導體層有折射率漸變效果。利用此一方法,可藉由控制磁場的分佈,使光在結構中行進時有不同的聚焦位置。

邏輯閘:
  利用兩個MDM構成的三端或四端口的波導結構,並於兩個波導間帶有一長條共振腔進行研究。通過相干控制入射表面電漿波的相位和振幅設計出各種訊號處理的各種功能,包括訊號調製、信號恢復、濾波、電漿子引發穿透率(PIT)和全光控制邏輯閘在此研究中將被設計和驗證。

電子加速器:
  電子束在由兩個金屬-介電質-金屬的平行板結構中穿過。當激發表面波時,我們將針對入射表面波的頻率、振幅大小、在一個週期內不同時刻的電場以及不同介電常數對電子束運動行為的影響來進行詳細的討論和研究。
英文摘要 In this dissertation, the simulation software VORPAL is be used to study. We will perform numerical simulations and theoretical analyses for plasmonic devices and applications. There are three parts: Magnetic Lenses, Logic Gates, and Electron Accelerators. All devices we investigated are composed of metal-dielectric-metal (MDM) or quasi-MDM structures.

Magnetic Lenses:
In this work, the semiconductor-glass waveguide arrays are used. The cyclotron frequency will be produced by interacting with the internal free electrons of semiconductor and external magnetic fields. The relationship of magnetic field intensity and the distance is the inverse square. So, the semiconductor arrays have different cyclotron frequencies at the different positions and the semiconductor layers’ refractive will have the characteristic with gradient index. With this method, it is possible to control the magnetic field distribution to have the different position of focus when light is traveling in the structure.

Logic Gates:
In this study, the signal processing in three-port and four-port plasmonic filter and coupler devices by coherently controlling the phases and amplitudes of incident surface plasmons is investigated. This device is composed of two MDM waveguides with a strip cavity imbedded in the shared metal layer. Various functions of signal processing, such as signal modulation, signal recovery, filtering, and plasmon-induced transparency (PIT), are proposed and examined. All-optical logic gates based on the proposed devices are also designed and verified.

Electron Accelerators:
The electron beam passes through a parallel plate structure which is composed of two metal-dielectric-metal structures. We study the electron energies which are effected by different frequencies, amplitudes, and different times at one cycle of incident surface plasmon. And, the different dielectric constant also effects the energy of electron beam. In this study, the effects of various parameters will be discussed in detail on electron energies.
論文目次 論文合格證明........................................................................................................................I
中文摘要................................................................................................................................II
Abstract.................................................................................................................................III
誌謝........................................................................................................................................V
Contents................................................................................................................................VI
List of Tables.....................................................................................................................VIII
List of Figures.......................................................................................................................IX
Chapter 1 Introduction
1-1 Introduction of plasma…………………………...…………………………………1
1-2 Introduction of surface plasmon……………………………………………………1
1-3 History review………………………………………………………………………3
1-4 Drude model………………………………………………………....……………...4
1-5 Slow light in Insulator-metal-insulator and metal-insulator-metal............................6
1-6 Numerical method: Finite-Difference Time-Domain (FDTD)................................10
1-7 Simulation software: VORPAL (VSim)...................................................................16
1-8 References................................................................................................................19
Chapter 2 Magnetic lenses of surface magnetoplasmons in semiconductor-glass waveguide arrays
2-1 Introduction..............................................................................................................21
2-2 Simulation model and method.................................................................................22
2-3 Hamiltonian optics and prediction of trajectory.......................................................25
2-4 Results and Discussion............................................................................................27
2-5 Conclusion...............................................................................................................35
2-6 References................................................................................................................36
Chapter 3 Coherent-controlled all optical devices based on plasmonic resonant tunneling waveguides
3-1 Introduction..............................................................................................................40
3-2 Simulation model and method.................................................................................41
3-3 Results and Discussion............................................................................................43
3-4 Conclusion...............................................................................................................52
3-5 References................................................................................................................53
Chapter 4 Electron accelerator
4-1 Introduction..............................................................................................................56
4-2 Simulation model and method.................................................................................57
4-3 Results and Discussion............................................................................................59
4-4 Conclusion...............................................................................................................66
4-5 References................................................................................................................67
Future works.........................................................................................................................70
Publication List.....................................................................................................................71
參考文獻 [1.1] Langmuir, I., 1928, Proceedings of the National Academy of Sciences of the United States of America, 14, 627.
[1.2] S. A. Kalele, N. R. Tiwari, S. W. Gosavi, S. K. Kulkarni (2007) Plasmon-assisted photonics at the nanoscale. J Nanophotonics 1:012501.
[1.3] R. H. Ritchie (1957), Plasma losses by fast electrons in thin films. Phys. Rev. 106:874-881.
[1.4] V. G. Veselago (1968), The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Usp. 10:509.
[1.5] D. W. Ward, K. A. Nelson, K. J. Webb (2005), On the physical of the negative index of refraction. New J. Phys. 7:213.
[1.6] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart(1999), Magnetism from conductors and enhanced nonlinear phenomena. IEEE trans. Microwave Theory Tech. 47:2075-2084.
[1.7] J. B. Pendry (2004), Negative refraction. Contemp. Phys. 45:191-202.
[1.8] J. B. Pendry (2000), Neggative refraction makes a perfect lens. Phys. Rev. Lett. 85:3966-3969.
[1.9] RR. A. Shelby, D. R. Smith, S. Schultz (2001), Experimental verification of a negative index of refraction. Science 292:79-81.
[1.10] A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski (1998), Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37:5271-5283.
[1.11] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
[1.12] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi (1999), Light speed reduction to 17 metres per second in an ultracold atomicgas. Nature 397:594–598.
[1.13] T. F. Krauss (2007), Slow light in photonic crystal waveguides, J. Phys. D 40:2666–2670.
[1.14] Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta (2005), Tunable all-optical delays via Brillouin slow-light in an opticalfiber, Phys. Rev. Lett. 94:153902.
[1.15] J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta (2002), Slowlight produced by stimulated Raman scattering in solid hydrogen,”Phys. Rev. A 65, 031801.
[1.16] H. Raether, Surface Plasmons (Springer-Verlag, 1988).
[1.17] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
[1.18] X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, F. Bartoli (2013), A metal-insulator0metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing. J. Appl. Phys. 113, 133102
[1.19] E. P. Fitrakis, T. kamalakis, T. Sphicopoulos(2011), Slow light in insulator-metal-insulator plasmonic waveguides. J. Opt. Soc. Am. B 28(9):2159-2164.
[1.20] Y. Chen, J. Dai, M. Yan, M. Qin (2014), Metal-insulator-metal plasmonicabsorbers: influence of lattice. Opt. Express 22(25), 30807.
[1.21] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman (2005), Planar metal plasmon waveguides: frequency –dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72(7), 075405.
[1.22] K. S. Yee (1966), Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE trans. Antennas Propagat. 14:302-307.
[1.23] A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-difference Time- Domain Method, Second Edition, (Artech House, Boston, 2000).
[1.24] https://www.txcorp.com/vsim
[2.1] S. A. Maier, Plasmonics: Fundamentals and Applications (Springe, New York 2007).
[2.2] M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41, 1-416 (2001).
[2.3 ]B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
[2.4] X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31, 1322-1324 (2006).
[2.5] X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[2.6] W. Lin, X. Zhou, G. P. Wang, and C. T. Chan, “Spatial Bloch oscillations of plasmons in nanoscale metal waveguide arrays,” Appl. Phys. Lett. 91, 243113 (2007).
[2.7] A. R. Davoyan, I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Plasmonic Bloch oscillations in chirped metal-dielectric structures,” Appl. Phys. Lett. 94, 161105 (2009).
[2.8] R. C. Shiu, Y. C. Lan and C. M. Chen, “Plasmonic Bloch oscillations in cylindrical metal–dielectric waveguide arrays,” Opt. Lett. 35, 4012-4014, 2010.
[2.9] R. C. Shiu and Y. C. Lan, “Plasmonic Zener tunneling in metal–dielectric waveguide arrays,” Opt. Lett. 36, 4179-4181, 2011.
[2.10] R. C. Shiu and Y. C. Lan, “Plasmonic Bloch-Zener oscillation and beam curling in metal-dielectric waveguide arrays,” IEEE J. Sel. Topics Quantum Elect. 19, 4601204 (2013).
[2.11] L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103, 033902 (2009).
[2.12] M. Sedlaček, Electron Physics of Vacuum and Gaseous Devices (John Wiley & Sons, Inc., New York 1996).
[2.13] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, New York, 1974).
[2.14] Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B 77, 205113 (2008).
[2.15] X. X. Liu, C. F. Tsai, R. L. Chern, and D. P. Tsai, “Dispersion mechanism of surface magnetoplasmons in periodic layered structures,” Appl. Opt. 48, 3102–3107 (2009).
[2.16] S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, “Magnetized Plasma for Reconfigurable Subdiffraction Imaging,” Phys. Rev. Lett. 106, 243901 (2011).
[2.17] V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. D. Clercq, M. Ameloot, O. A. Aktsipetrov, V.r V. Moshchalkov, and T. Verbiest, “Plasmons Reveal the Direction of Magnetization in Nickel Nanostructures,” ACS Nano 5, 91-96 (2011).
[2.18] V. L. Krutyanskiy, I. A. Kolmychek, E. A. Gan’shina, T. V. Murzina, P. Evans, R. Pollard, A. A. Stashkevich, G. A. Wurtz, and A. V. Zayats, “Plasmonic enhancement of nonlinear magneto-optical response in nickel nanorod metamaterials,” Phys. Rev. B 87, 035116 (2013).
[2.19] D. Sarid, “Enhanced surface-magnetoplasma interactions in a semiconductor,” Phys. Rev. B 29(4), 2344–2346 (1984).
[2.20] M. S. Kushwaha, and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
[2.21] F. G. Elmzughi, and D. R. Tilley, “Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry,” J. Phys. Condens. Matter 6(23), 4233–4246 (1994).
[2.22] J. H. Jacobo-Escobar, and G. H. Cocoletzi, “Magnetic field effects on the optical response of a film with a rough surface: Voigt geometry,” Superlattices Microstruct. 33(3), 145–154 (2003).
[2.23] B. Sepúlveda, L. M. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave. Technol. 24, 945-955 (2006).
[2.24] F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008).
[2.25] Y. C. Lan, “Magnetic-field-induced frequency shifts for resonant tunneling effects caused by surface plasmons excitation,” IEEE J. Sel. Topics Quantum Elect. 14, 1559-1564 (2008).
[2.26] Y. C. Lan and C. M. Chen, “Long-range surface magnetoplasmon on thin plasmon films in the Voigt configuration,” Opt. Express 18, 12470-12481 (2010).
[2.27] J. G. Rivas, C. Janke, P. H. Bolivar and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13, 847-859 (2005).
[2.28] C. Nieter and J. R. Cary, “VORPAL: a versatile plasma simulation code,” J. Comput. Phys. 196, 448-473 (2004).
[2.29] D. N. Smithe, “Finite-difference time-domain simulation of fusion plasmas at radiofrequency time scales,” Phys. Plasma 14, 056104 (2007).
[2.30] P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Singapore 1991).
[3.1] R. Bruck, O. L. Muskens (2013) Plasmonic nanoantennas as integrated coherentperfect absorbers on SOI waveguides for modulators and all-optical switches. Opt. Express 21(23):27652-27661.
[3.2] X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev (2014) Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl. Phys. Lett. 104:141102.
[3.3] J. Zhang, K. F. MacDonald, N. I. Zheludev (2012) Controlling light-with-light without nonlinearity. Light: Sci. & Appl. 1:e18.
[3.4] X. Fang, K. F. MacDonald, N. I. Zheludev (2015) Controlling light with light using coherent metadevices: all-optical transistor, summator and invetor. Light Sci Appl 4:e292.
[3.5] A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, G. P. Agrawal (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express 18(6):6191-6204.
[3.6] G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, S. Fan (2009) Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale. Chin. Opt. Lett. 7(4):302-308.
[3.7] B. Wang, G. P. Wang (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl. Phys. Lett. 87:013107.
[3.8] M. Fang, F. Shi, Y. Chen (2016) Unidirectional All-Optical Absorption Switch Based on Optical Tamm State in Nonlinear Plasmonic Waveguide. Plasmonics 11:197-203.
[3.9] Z. kang, G. P. Wang (2008) Coupled metal gap waveguides as plasmonic wavelength sorters. Opt. Express 16(11):7680-7685.
[3.10] A. Mahigir, P. Dastmalchi, W. Shin, S. Fan, G. Veronis (2015) Plasmonic coaxial waveguide-cavity devices. Opt. Express 23(16):20549-20562.
[3.11] Z. Chen, X. Song, G. Duan, L. Wang, L. Yu (2015) Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems. IEEE Photo. J. 7(3): 2701009.
[3.12] X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, X. Jin (2010) A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities. J. Opt. Soc. Am. B 27(12):2707-2713.
[3.13] J. Tao, X. G. Huang, J. H. Zhu (2010) A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. Opt. Express 18(11):11111-11116.
[3.14] Z. He, H. Li, S. Zhan, B. Li, Z. Chen, H. Xu (2015) Tunable Multi-switching in Plasmonic Waveguide with Kerr Nonlinear Resonator. Sci. Rep. 5:15837.
[3.15] R. C. Shiu, Y. C. Lan, G. Y. Guo, (2014) Optical multiple bistability in metal-insulator-metal plasmonic waveguides side-coupled with twin racetrack resonators. J. Opt. Soc. Am. B 31(11):2581-2586.
[3.16] P. H. Lee, Y. C. Lan (2010) Plasmonic Waveguide Filters Based on Tunneling and Cavity Effects. Plasmonics 5:417-422.
[3.17] A. Melikyan, L. Alloatt, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, J. Leuthold (2014) High-speed plasmonic phase modulators. Nature Photon. 8:229-233.
[3.18] F. Yu, D. Yao, W. Knoll (2004) Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS). Nucleic Acids Res. 32(9):e75.
[3.19] D. Wu, N. Fang, C. Sun, X. Zhang (2003) Terahertz plasmonic high pass filter. Appl. Phys. Lett. 83:201-203.
[3.20] R. D. Kekatpure, E. S. Barnard, W. Cai, M. L. Brongersma (2010) Phase-coupled plasmon-induced transparency. PRL 104: 243902.
[3.21] N. Liu, L. Langguth, T. Weiss, J. kastel, M. Fleischhauer, T. Pfau, H. Giessen (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8:758-762.
[3.22]. M. Yaramadi, M. K. Moravvej-Farshi, L. Yousefi (2015) Subwavelength grapheme-based plasmonic THz switches and logic gates. IEEE Trans. THz Sci. Technol. 5(5):725-731.
[3.23] P. B. Johnson, R. W. Christy (1972) Optical constants of the noble metals. Phys. Rev. B 6(12):4370-4379.
[3.24] C. Nieter, J. R. Cary (2004) VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196:448-473.
[4.1] S. Ya. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, C. Joshi, Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel. Phys. Rev. Lett. 92, 095004 (2004).
[4.2] Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K. A. Tanaka, H. Takabe, S. Nakai, Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68, 48 (1992).
[4.3] E. Esarey, P. Sprangle, and J. Krall, Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 5443 (1995).
[4.4] B. Hafizi, A. Ting, E. Esarey, P. Sprangle, and J. Krall, Vacuum beat wave acceleration. Phys. Rev. E 55, 5924 (1997).
[4.5] T. Tajima and J. M. Dawson, Laser Electron Accelerator. Phys. Rev. Lett. 43, 267 (1979).
[4.6] V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, -P Chambaret, J-F Chemin, K. Krushelnick, G. Malka, SPD Mangles, Z. Najmudin, M. Pittman, J-P Rousseau, J-N Scheurer, B. Walton, AE Dangor, Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 98, 1596-1600 (2002).
[4.7] M. I. K. Santala, Z. Najmudin, E. L. Clark, M. Tatarakis, K. Krushelnick, A. E. Dangor, V. Malka, J. Faure, R. Allott, R. J. Clarke, Observation of a Hot High-Current Electron Beam from a Self-Modulated Laser Wakefield Accelerator. Phys. Rev. Lett. 86, 1227 (2001).
[4.8] E. Esarey, P. Sprangle, J. Krall, and A. Ting, Overview of Plasma-Based Accelerator Concepts. IEEE Trans. Plasma Sci. 24, 252 (1996).
[4.9] C. Joshi and T. C. Katsouleas, The concept of a plasma grating accelerator was discussed in Laser Ac-celeration of Particles. AIP, New York, 1985.
[4.10] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398 (1968).
[4.11] C. S. Liu and V. K. Tripathi, Excitation of Surface Plasma Waves Over Metallic Surfaces by Lasers and Electron Beams. IEEE Trans. Plasma Sci. 28, 353 (2000).
[4.12] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics Springer-Verlag, New York, 1988, p. 111.
[4.13] D. B. Singh and V. K. Tripathi, Attenuated-total-reflection predictions to surface-plasmon resonance in a layered structure. J. Appl. Phys. 98, 053708 (2005).
[4.14] C. S. Liu, G. Kumar, and V. K. Tripathi, Laser mode conversion into a surface plasma wave in a metal coated optical fiber. J. Appl. Phys. 100, 013304 (2006).
[4.15] A. Macchi, F. Cornolti, F. Pegoraro, T. V. Liseikina, H. Ruhl, and V. A Vshivkov, Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses. Phys. Rev. Lett. 87, 205004 (2001).
[4.16] E. Kretschmann, H. Raether, Z. Naturforsch, Radiative Decay of Non Radiative Surface Plasmons Excited by Light. 23A, 2135 (1968).
[4.17] E. Kretschmann, Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberfliichenplasmaschwingungen. Z. Phys. 241, 313-324 (1971).
[4.18] J. Zawadzka, D. Jaroszynski, J. J. Carey, and K. Wynne, Evanescent-wave acceleration of ultrashort electron pulses. Appl. Phys. Lett. 79, 2130 (2001).
[4.19] Zawadzka, D.A. Jaroszynski, J.J. Carey, K. Wynne, Evanescent-Wave Acceleration of Femtosecond Electron Bunches, Nucl. Instr. Meth. A 445, 324-328 (2000).
[4.20] S. Kalmykov et al., Philos. Trans. R. Soc. London, Electron acceleration by surface plasma waves in double metal surface structure. Ser. A 364, 725 (2006).
[4.21] L. C. Steinhauer and W. D. Kimura, Slow waves in microchannel metal waveguides and application to particle acceleration. Phys. Rev. ST Accel. Beams 6, 061302 (2003).
[4.22] C. S. Liu, Gagan Kumar, D. B. Singh, and V. K. Tripathi, Electron acceleration by surface plasma waves in double metal surface structure, J. Appl. Phys. 102, 113301 (2007).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-02-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-02-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw