進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1302201622344300
論文名稱(中文) 目標與分心刺激之fMRI重複抑制
論文名稱(英文) fMRI Repetition Suppression for Targets and Distractors
校院名稱 成功大學
系所名稱(中) 心理學系
系所名稱(英) Department of Psychology
學年度 104
學期 1
出版年 105
研究生(中文) 連志浩
研究生(英文) Chih-Hao Lien
電子信箱 chihhao@outlook.com
學號 U76024038
學位類別 碩士
語文別 中文
論文頁數 149頁
口試委員 指導教授-林君昱
口試委員-張智宏
口試委員-陳德祐
中文關鍵字 重複抑制  注意力  功能性磁振造影(fMRI) 
英文關鍵字 Repetition Suppression (RS)  attention  fMRI 
學科別分類
中文摘要 重複抑制(Repetition Suppression, RS)是指當重複看到相同的刺激,或是重複進行相同反應時,相關腦區之活化程度會顯著下降的現象。目前對於重複抑制是否是個自動化的現象或為一種需要投入注意力參與的歷程,仍是有所爭議。例如Jiang et al.(2000)呈現一連串臉孔,要求參與者對與樣本刺激相同的目標刺激進行反應,發現參與者對於重複出現的目標刺激(需要注意)與分心刺激(不需注意)皆呈現重複抑制,支持重複抑制是自動化現象的觀點。但Chun與Yi(2005)同時呈現疊合的(composite)風景與臉孔兩種刺激,要求參與者根據線索注意風景或臉孔中的一種是否改變,卻發現只有在初次出現與再次出現時皆是需注意的目標種類時,才會在對應腦區出現重複抑制,支持重複抑制需要注意力投入的看法。本研究欲檢驗對於目標與分心刺激所需要的不同注意程度,是否會影響重複抑制的產生與否。我們以Jiang et al.(2000)的實驗派典為基礎,並搭配Chun與Yi(2005)採用風景、臉孔兩種刺激的設計來進行修改,藉由目標刺激與分心刺激的種類變化進行注意力的操弄,以釐清注意力的投入與重複抑制之間的關聯。結果顯示不論分心刺激的種類與目標刺激相同與否,參與者對於重複出現的分心刺激皆會呈現重複抑制,支持重複抑制是一種自動化歷程的觀點。
英文摘要 Repetition Suppression (RS) refers to the phenomenon that when the same stimulus is repeated, the BOLD responses to it decrease in certain brain areas. It reminas unclear what exactly its underlying neural mechanism is. One theory suggests that RS is a perceptual-level automatic process; therefore it should remain the same regardless of attentional or task demand manipulations (e.g., Jiang et al., 2000). However, there are also several studies reported a different pattern suggesting that RS is not an automatic process and can be modulated by attention (Yi & Chun, 2005). One reason that why previous studies have yield different results might be the differences in the level of attention to the stimuli manipulated in those studies.
We reckon that when targets and distractors belong to very different categories, the distractors can be ignored immediately after the stimulus category is identified, thus receives minimum attention. And this may not be enough to produce RS (e.g., Yi & Chun, 2005). We modified the paradigm Jiang et al. (2000) used, adding a manipulation of using two categories of stimuli (face and scene), to investigation our hypothesis. The results indicate that RS can be found in stimulus-category related areas (ie. parahippocampal place area and fusiform face area) in all four conditions regardless of whether targets and distractors were from same category or not. In sum, our results support better the view that RS is an automatic process, at least in the paradigm we used.
論文目次 第一章 緒論 1
第一節 重複抑制 2
第二節 促發 4
第三節 重複抑制的發展與證據 6
第四節 fMRI適應 9
第五節 重複抑制與注意力間的爭議 10
觀點一:重複抑制為自動化歷程,不受注意力影響 12
第六節 研究問題與假設 28
第二章 實驗方法 38
第一節 實驗參與者 39
第二節 實驗刺激 39
台灣人基本情緒及衍生情緒之表情 40
台灣人臉資料庫(Taiwanese Facial Expression Image Database,TFEID) 40
Postech Faces ’01 (PF01) 41
標準化刺激銀行(Bank of Standardized Stimuli, BOSS) 42
第三節 實驗工具與儀器設備 42
一般性統計分析軟體 42
fMRI 資料分析軟體 42
磁振造影影像之取得 43
第四節 工作記憶作業(working memory task) 44
第五節 功能性定位掃描作業(functional localizer task) 46
第六節 再認作業(Recognition Task) 48
第七節 功能性磁振造影影像資料分析方式 50
功能性磁振造影影像資料前處理 50
功能性磁振造影影像資料分析 51
ROI定義 53
第三章 結果 54
第一節 行為資料分析 55
工作記憶作業 55
再認作業 71
第二節 影像資料分析 78
功能性定位掃描作業 78
ROI分析 79
FFA與PPA對四種情境的整體反應樣式 86
全腦分析(whole-brain analysis) 94
第四章 討論 104
第一節 重複抑制為自動化歷程,不受注意力影響 105
第二節 兩種分心刺激的活化反應與樣式具有相似性 106
第三節 注意力影響重複抑制的關鍵在於處理到資訊? 109
第四節 對整體活化樣式相似性的解釋 112
第五節 重複增強的解釋 113
第六節 FFA牽涉其他的歷程? 117
第七節 本研究之貢獻 119
使用兩種差異較大的刺激 119
統一臉孔刺激的方向 120
刺激中刺激重複次數較多 120
嘗試次數與內含刺激數量較少 121
固定目標刺激與兩種分心刺激的數量 122
不重複使用刺激 123
改變刺激的呈現方式並讓相同刺激可以連續呈現 124
兩種分心刺激採用相同種類的刺激 124
檢驗非重複呈現分心刺激的活化樣式 125
集中關注FFA與PPA兩處ROI 126
完全分離呈現四種情境的結果 127
第八節 研究限制 128
參與者會被動觀看刺激 128
嘗試次次數較少 129
刺激之間的細微差異 129
第九節 未來研究展望 130
降低參與者負擔 130
檢驗重複抑制與注意力之間的關係 131
第十節 總結 133
附錄一:各參與者的ROI座標與圖示 143
附錄二:各參與者進行工作記憶作業之情形 149

參考文獻 Badgaiyan, R. D., Schacter, D. L., & Alpert, N. M. (2001). Priming within and across Modalities: Exploring the Nature of rCBF Increases and Decreases. NeuroImage, 13(2), 272–282. http://doi.org/10.1006/nimg.2000.0693
Ballesteros, S., & Mayas, J. (2015). Selective attention affects conceptual object priming and recognition: a study with young and older adults. Frontiers in Psychology, 5. http://doi.org/10.3389/fpsyg.2014.01567
Bentley, P., Vuilleumier, P., Thiel, C. M., Driver, J., & Dolan, R. J. (2003). Effects of Attention and Emotion on Repetition Priming and Their Modulation by Cholinergic Enhancement. Journal of Neurophysiology, 90(2), 1171–1181. http://doi.org/10.1152/jn.00776.2002
Bruce Goldstein. (2010). Cognitive Psychology, Third Edition. Linda Schreiber-Ganster.
Buckner, R. L., Petersen, S. E., Ojemann, J. G., Miezin, F. M., Squire, L. R., & Raichle, M. E. (1995). Functional anatomical studies of explicit and implicit memory retrieval tasks. The Journal of Neuroscience, 15(1), 12–29.
Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences, 93(24), 13494–13499.
Eger, E., Henson, R. N. A., Driver, J., & Dolan, R. J. (2004). BOLD Repetition Decreases in Object-Responsive Ventral Visual Areas Depend on Spatial Attention. Journal of Neurophysiology, 92(2), 1241–1247. http://doi.org/10.1152/jn.00206.2004
Gabitov, E., Manor, D., & Karni, A. (2014). Done That: Short-term Repetition Related Modulations of Motor Cortex Activity as a Stable Signature for Overnight Motor Memory Consolidation. Journal of Cognitive Neuroscience, 26(12), 2716–2734. http://doi.org/10.1162/jocn_a_00675
Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., & Malach, R. (1999). Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex. Neuron, 24(1), 187–203. http://doi.org/10.1016/S0896-6273(00)80832-6
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23. http://doi.org/10.1016/j.tics.2005.11.006
Henson, R., Shallice, T., & Dolan, R. (2000). Neuroimaging Evidence for Dissociable Forms of Repetition Priming. Science, 287(5456), 1269–1272. http://doi.org/10.1126/science.287.5456.1269
Henson, R. N. A., Shallice, T., Gorno-Tempini, M. L., & Dolan, R. J. (2002). Face Repetition Effects in Implicit and Explicit Memory Tests as Measured by fMRI. Cerebral Cortex, 12(2), 178–186. http://doi.org/10.1093/cercor/12.2.178
Henson, R. N. . (2003). Neuroimaging studies of priming. Progress in Neurobiology, 70(1), 53–81. http://doi.org/10.1016/S0301-0082(03)00086-8
Henson, R. N., & Mouchlianitis, E. (2007). Effect of spatial attention on stimulus-specific haemodynamic repetition effects. NeuroImage, 35(3), 1317–1329. http://doi.org/10.1016/j.neuroimage.2007.01.019
Hsu, Y.-F., Hämäläinen, J. A., & Waszak, F. (2014). Repetition suppression comprises both attention-independent and attention-dependent processes. NeuroImage, 98, 168–175. http://doi.org/10.1016/j.neuroimage.2014.04.084
Ishai, A., Pessoa, L., Bikle, P. C., & Ungerleider, L. G. (2004). Repetition suppression of faces is modulated by emotion. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9827–9832. http://doi.org/10.1073/pnas.0403559101
Jiang, Y., Haxby, J. V., Martin, A., Ungerleider, L. G., & Parasuraman, R. (2000). Complementary Neural Mechanisms for Tracking Items in Human Working Memory. Science, 287(5453), 643–646. http://doi.org/10.1126/science.287.5453.643
Julian, J. B., Fedorenko, E., Webster, J., & Kanwisher, N. (2012). An algorithmic method for functionally defining regions of interest in the ventral visual pathway. NeuroImage, 60(4), 2357–2364. http://doi.org/10.1016/j.neuroimage.2012.02.055
Koutstaal, W., Wagner, A. D., Rotte, M., Maril, A., Buckner, R. L., & Schacter, D. L. (2001). Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia, 39(2), 184–199. http://doi.org/10.1016/S0028-3932(00)00087-7
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158. http://doi.org/10.1038/377155a0
Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1998). The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences, 95(3), 861–868.
Kouider, S., Eger, E., Dolan, R., & Henson, R. N. (2009). Activity in Face-Responsive Brain Regions is Modulated by Invisible, Attended Faces: Evidence from Masked Priming. Cerebral Cortex, 19(1), 13–23. http://doi.org/10.1093/cercor/bhn048
Lueschow, A., Miller, E. K., & Desimone, R. (1994). Inferior Temporal Mechanisms for Invariant Object Recognition. Cerebral Cortex, 4(5), 523–531. http://doi.org/10.1093/cercor/4.5.523
Miller, E. K., & Desimone, R. (1994). Parallel Neuronal Mechanisms for Short-Term Memory. Science, 263(5146), 520–522.
Moore, K. S., Yi, D.-J., & Chun, M. (2013). The Effect of Attention on Repetition Suppression and Multivoxel Pattern Similarity. Journal of Cognitive Neuroscience, 25(8), 1305–1314. http://doi.org/10.1162/jocn_a_00387
Murray, S. O., & Wojciulik, E. (2004). Attention increases neural selectivity in the human lateral occipital complex. Nature Neuroscience, 7(1), 70–74. http://doi.org/10.1038/nn1161
Purves, Dale, Brannon, Elizabeth M., Cabeza, Roberto, Huettel, Scott A., & LaBar, Kevin S. (2007). Principles of Cognitive Neuroscience. Baker & Taylor Books.
Schacter, D. L., & Buckner, R. L. (1998). On the Relations among Priming, Conscious Recollection, and Intentional Retrieval: Evidence from Neuroimaging Research. Neurobiology of Learning and Memory, 70(1–2), 284–303. http://doi.org/10.1006/nlme.1998.3854
Schacter, D. L., & Buckner, R. L. (1998). Priming and the Brain. Neuron, 20(2), 185–195. http://doi.org/10.1016/S0896-6273(00)80448-1
Schacter, D. L., Wig, G. S., & Stevens, W. D. (2007). Reductions in cortical activity during priming. Current Opinion in Neurobiology, 17(2), 171–176. http://doi.org/10.1016/j.conb.2007.02.001
Sobotka, S., & Ringo, J. L. (1996). Mnemonic Responses of Single Units Recorded from Monkey Inferotemporal Cortex, Accessed via Transcommissural Versus Direct Pathways: A Dissociation between Unit Activity and Behavior. The Journal of Neuroscience, 16(13), 4222–4230.
Squire, L. R., Ojemann, J. G., Miezin, F. M., Petersen, S. E., Videen, T. O., & Raichle, M. E. (1992). Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proceedings of the National Academy of Sciences of the United States of America, 89(5), 1837–1841.
Turk-Browne, N. B., Yi, D.-J., & Chun, M. M. (2006). Linking Implicit and Explicit Memory: Common Encoding Factors and Shared Representations. Neuron, 49(6), 917–927. http://doi.org/10.1016/j.neuron.2006.01.030
Thoma, V., & Henson, R. N. (2011). Object representations in ventral and dorsal visual streams: fMRI repetition effects depend on attention and part–whole configuration. NeuroImage, 57(2), 513–525. http://doi.org/10.1016/j.neuroimage.2011.04.035
van Turennout, M., Ellmore, T., & Martin, A. (2000). Long-lasting cortical plasticity in the object naming system. Nature Neuroscience, 3(12), 1329–1334. http://doi.org/10.1038/81873
Vuilleumier, P., Schwartz, S., Duhoux, S., Dolan, R. J., & Driver, J. (2005). Selective Attention Modulates Neural Substrates of Repetition Priming and “Implicit” Visual Memory: Suppressions and Enhancements Revealed by fMRI. Journal of Cognitive Neuroscience, 17(8), 1245–1260. http://doi.org/10.1162/0898929055002409
Wei-chun Wang, Ranganath, C., & Yonelinas, A. P. (n.d.). Activity reductions in perirhinal cortex predict conceptual priming and familiarity-based recognition. Neuropsychologia. http://doi.org/10.1016/j.neuropsychologia.2013.10.006
Wiggs, C. L., & Martin, A. (1998). Properties and mechanisms of perceptual priming. Current Opinion in Neurobiology, 8(2), 227–233. http://doi.org/10.1016/S0959-4388(98)80144-X
Wojciulik, E., Kanwisher, N., & Driver, J. (1998). Covert Visual Attention Modulates Face-Specific Activity in the Human Fusiform Gyrus: fMRI Study. Journal of Neurophysiology, 79(3), 1574–1578.
Yi, D.-J., & Chun, M. M. (2005). Attentional Modulation of Learning-Related Repetition Attenuation Effects in Human Parahippocampal Cortex. The Journal of Neuroscience, 25(14), 3593–3600. http://doi.org/10.1523/JNEUROSCI.4677-04.2005
Yi, D.-J., Kelley, T. A., Marois, R., & Chun, M. M. (2006). Attentional modulation of repetition attenuation is anatomically dissociable for scenes and faces. Brain Research, 1080(1), 53–62. http://doi.org/10.1016/j.brainres.2006.01.090
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-02-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-02-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw