進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1302201417304200
論文名稱(中文) 基於精確時間協定之車內網路時間同步架構設計與實踐
論文名稱(英文) Design and Implementation of Precision Time Protocol Based Time Synchronization for Intra-vehicular Network
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 102
學期 1
出版年 103
研究生(中文) 謝孟穎
研究生(英文) Meng-Ying Hsieh
學號 p76001166
學位類別 碩士
語文別 英文
論文頁數 73頁
口試委員 指導教授-楊中平
口試委員-陳培殷
口試委員-張大緯
口試委員-李威勳
口試委員-楊中平
中文關鍵字 時間同步  無線傳感器網路 
英文關鍵字 Time Synchronization  Wireless Sensor Network 
學科別分類
中文摘要 隨著世界的經濟成長與科技進步,消費者對汽車使用上的期望也從單純的運輸功能增加到對所有駕駛者與乘客的安全、舒適及便利的要求。智慧型運輸系統(Intelligent Transportation Systems, ITS)便以此為目的而產生,ITS即是運用電子、控制、通訊與資訊科技,結合交通管理的理論與實務,提昇運輸系統的服務功能,是目前我國與世界先進國家致力研究發展的方向。不管是在車裡、車外,智能交通系統的主要目的,都是利用電子、通訊、資訊與感測等技術,將路、車、人的資訊加以整合與管理,為用路人提供即時資訊,從而增進運輸系統的安全、效率及舒適性。
欲達到上述所目標,我們必須融合不同的行車資訊。除了車內本身各個ECUs (Electronic Control Unit)的各種狀況訊息,還必須在嵌入式系統平台上增加其他傳感器,並將所有傳感器及車內訊息進行溝通的機制,建立各傳感器的資料融合機制及資料內容的解碼。不幸 的是各個傳感器器間可能因為震盪器的飄移,導致各個傳感器間時間軸不一致,在這種情況下,將會發生因時間不一致而產生的各種問題。這篇論文主要目的在於實現無線傳感器網路時間同步架構的設計,IEEE1588為目前最被廣泛使用之時間同步標準,除了可達到所需精度之外且移植性與可擴展性非常高,故適合於本系統同步架構使用。我們利用Panda Board作為OBU(On Board Unit)負責各傳感器間的資料融合,其餘無線傳感器則利用MSP430做為Micro-Control負責無線傳感器與OBU間的通訊,將利用IEEE 1588建立起整個無線傳感器網路的同步架構。最後結果部份除了實踐無線傳感器網路的同步架構,另外也針對各種同步間隔在精度與電力消耗上的相對關係作討論。
英文摘要 Due to economic growth and technological progress, consumers expect vehicles to come equipped with more functionalities and not only safely transport passengers, but also meet standards of comfort and convenience. The ITS (Intelligent Transportation Systems) was created to serve. ITS uses traffic management and combines all kinds of science and technology (e.g., electronics, controllers, communications) to improve the capabilities of transportation systems. This is the direction that our country and also other advanced countries of the world are committed to researching and developing. Whether inside the vehicle or outside, ITS is fusing the information from road, vehicle and people by electronics, communications and sensing technology, etc. to provide real-time information to consumers, thus promoting transportation system safety, efficiency, and comfort.
To achieve the objectives listed above, apart from the ECUs (Electronic Control Unit) built-in vehicles, we have to add other sensors for various information. We then establish an embedded system platform to fuse the data collected by ECUs and the other sensors. The embedded system not only needs to combine data and establish a communication mechanism between all sensors and the platform, but even has to establish a packet encoding and decoding mechanism. Unfortunately, as a result of the oscillators drifting between each sensor it may result in timeline inconsistencies, causing various problems. The main purpose of this paper is to implement time synchronization for wireless sensor network architecture designs within vehicles. Currently IEEE 1588 is the most widely used time synchronization. IEEE 1588 not only can achieve the required accuracy but also has high portability and scalability, so it is suitable for use in this system.
We use Panda Board as OBU (On Board Unit) it is responsible for the integration of information between the sensors and makes use of MSP430 as Micro-Control, responsible for the communication between the wireless sensors and the OBU, to build the wireless sensor network synchronization architecture. In the final outcome we will show the WSN synchronization architecture and discuss the relative relationship of accuracy and power consumption on different sync intervals.
論文目次 中文論文證明書 I
英文論文證明書 II
摘要 III
Abstract IV
Acknowledgement VI
List of Table X
List of Figures XI
Chapter.1 Introduction 1
1.1 Motivation 1
1.2 System overview 2
1.3 Achievement outcomes 4
Chapter.2 Background Knowledge 6
2.1 μC/OS-II Overview 6
2.1.1 The Real-Time Kernel 6
2.1.2 The Features of μC/OS-II 6
2.1.3 The Concept of μC/OS-II 9
2.2 Concept of Time Synchronization 13
2.2.1 Definitions 13
2.2.2 Traditional WSN Time Synchronization Approaches 16
2.3 IEEE 1588 Overview 20
2.3.1 Overview the Standard 20
2.3.2 System Boundaries and Communications 21
2.3.3 Synchronization Overview 22
Chapter.3 Related Works 27
3.1 Problems of sensor network 27
3.1.1 Restrictions of sensor networking 27
3.1.2 Design principles of clock synchronization in vehicular network 28
3.2 Related research 29
Chapter.4 System Implementation 31
4.1 Hardware Architecture 31
4.1.1 System Architecture Overview 31
4.1.2 Panda Board 32
4.1.3 MSP430-F5438 34
4.1.4 Low-Cost Low-Power 2.4 GHz RF Transceiver CC2500 35
4.2 System Software Architecture 36
4.3 WSN Synchronization Implement 37
4.3.1 To Meet WSN Condition 38
4.3.2 Formulate clock data set 38
4.3.3 PTP Time Synchronization Implementation 41
4.4 System Fault Tolerance 50
4.4.1 Transmission error avoidance 50
4.4.2 Reduce transmission collision 53
4.4.3 Network delay anomaly prevention 55
Chapter.5 Experimental Results 56
5.1 The Experimental Architecture 56
5.1.1 Experimental Equipment 56
5.1.2 The Experimental Architecture 56
5.2 Experimental Synchronization Performance 57
5.3 Relationship between Interval and Power Consume 62
5.3.1 Influence of Interval 62
5.3.2 Power Consumed Calculation 64
5.3.3 Experiment Summarized 67
5.4 System Synchronization Overhead 68
Chapter.6 Conclusion and Future Work 70
6.1 Conclusion 70
6.2 Future Work 70
Reference 72
參考文獻 [1] A. Westenberger, T. Huck, M. Fritzsche, T. Schwarz, and K. Dietmayer, "Temporal synchronization in multi-sensor fusion for future driver assistance systems," in Precision Clock Synchronization for Measurement Control and Communication (ISPCS), 2011 International IEEE Symposium on, 2011, pp. 93-98.
[2] A. Mahmood, G. Gaderer, H. Trsek, S. Schwalowsky, and N. Kero, "Towards high accuracy in IEEE 802.11 based clock synchronization using PTP," in Precision Clock Synchronization for Measurement Control and Communication (ISPCS), 2011 International IEEE Symposium on, 2011, pp. 13-18.
[3] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, "Clock synchronization for wireless sensor networks: a survey," Ad Hoc Networks, vol. 3, pp. 281-323, 2005.
[4] C. Hyuntae, S. Sanghyun, and B. Yunju, "Implementation of a precision time protocol over low rate wireless personal area networks," in Computer Systems Architecture Conference, 2008. ACSAC 2008. 13th Asia-Pacific, 2008, pp. 1-8.
[5] C. Hyuntae, J. Jeonsu, C. Bongrae, J. Youngwoo, L. Seung-Woo, and B. Yunju, "Precision Time Synchronization Using IEEE 1588 for Wireless Sensor Networks," in Computational Science and Engineering, 2009. CSE '09. International Conference on, 2009, pp. 579-586.
[6] Jean J.Labrosse, “MICRO C/OS-II:THE REAL TIME KERNEL 2/E,” 2nd ed. Taiwan Taipei. CMP Books, 2006
[7] J. Kannisto, T. Vanhatupa, M. Hännikäinen, and T. D. Hämäläinen, "Precision Time Protocol Prototype on Wireless LAN," in Telecommunications and Networking - ICT 2004. vol. 3124, J. Souza, P. Dini, and P. Lorenz, Eds., ed: Springer Berlin Heidelberg, 2004, pp. 1236-1245.
[8] S. M. Lasassmeh and J. M. Conrad, "Time synchronization in wireless sensor networks: A survey," in IEEE SoutheastCon 2010 (SoutheastCon), Proceedings of the, 2010, pp. 242-245.
[9] Y. Yang, "Time Synchronization in Wireless Sensor Networks:A Survey," ed, 2012, p. 45.
[10] W. Ting-Ying, Q. Zhi-Liang, Y. Chung-Ping, and L. Yu-Tsung, "Implementation of In-vehicle Multi-sensor Information Fusion Gateway for Cooperative Driving," in Intelligent Systems, Modelling and Simulation (ISMS), 2011 Second International Conference on, 2011, pp. 19-24.
[11] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, IEEE 1588-2002, 2002.
[12] Low-Cost Low-Power 2.4 GHz RF Transceiver (Rev. C). URL: http://www.ti.com/lit/ds/symlink/cc2500.pdf
[13] J. Youngtae, P. Chongmyung, L. Joahyoung, and J. Inbum, "Energy Effective Time Synchronization inWireless Sensor Network," in Computational Science and its Applications, 2007. ICCSA 2007. International Conference on, 2007, pp. 547-553.
[14] OMAPTM 4 PandaBoard System Reference Manual. URL: http://pandaboard.org/sites/default/files/board_reference/EA1/Panda_Board_Spec_REVEA1_04.pdf
[15] MSP430x5xx Family User's Guide. URL: http://www.ti.com/lit/ug/slau208m/slau208m.pdf
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw