進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1301202023012800
論文名稱(中文) 聚乙二醇-鄰苯二酚修飾多肽製備之水膠於抗菌與藥物傳遞應用
論文名稱(英文) Hydrogels prepared by PEG-catechol group modified polypeptides for antimicrobial and drug delivery applications
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 1
出版年 109
研究生(中文) 范氏玉
研究生(英文) Pham Thi-Ngoc
學號 N36077037
學位類別 碩士
語文別 英文
論文頁數 79頁
口試委員 口試委員-林睿哲
口試委員-許梅娟
口試委員-吳文中
指導教授-詹正雄
中文關鍵字 抗菌活性  磷苯二酚官能基  藥物傳輸  酵素交聯反應  明膠  水膠  聚胺酸  銀奈米粒子 
英文關鍵字 Antibacterial activity  Catechol group  Drug delivery  Enzymatic cross-linking  Gelatin  Hydrogel  Polypeptide  Silver nanoparticles 
學科別分類
中文摘要 近年來,具有抗菌奈米粒子與抗體之多功能仿生水膠之研究,由於其高生物相容性、高降解性、低毒性與對於多重菌株之抗菌活性而蓬勃發展。此仿生水膠可應用於傷口癒合、組織工程與藥物載體,在本研究中,我們設計出一款以鄰苯二酚官能基修飾之聚乙二醇水膠複合抗菌奈米粒子(銀奈米粒子)與藥物(DOX 抗癌藥物)之水膠並分別應用於抗菌材料與藥物傳遞系統。銀奈米粒子可利用HRP酵素與過氧化氫氧化劑在聚胺酸溶液中透過酵素交聯反應使其形成銀奈米粒子附載磷苯二酚修飾聚乙二醇明膠水膠。實驗結果顯示,本反應無須添加毒性還原劑或藉由紫外光、熱處理,就可以使抗菌銀奈米粒子於聚胺酸水溶液形成。結果說明,水膠之成膠速度、機械強度、黏著強度、膨潤速率與酵素降解速率可以受酵素/氧化劑濃度、磷苯二酚含量與還原時間、初始銀粒子濃度等還原條件來調控。特別是,銀奈米粒子複合磷苯二酚修飾聚乙二醇明膠水膠對葛蘭氏陰性與陽性菌皆表現出優秀之抗菌活性。在可注射型水膠包覆DOX藥物,可以藉由鐵離子與過氧化氫進行錯合/氧化交聯反應在短時間內成膠。我們發現DOX藉由形成金屬-DOX/鄰苯二酚複合物來負載於水膠網絡之中。機械強度、膨潤比例、降解行為可以被不同的鐵離子/過氧化氫濃度比調控。DOX釋放速率可藉由不同溶液pH值調控。
英文摘要 Recently, there is an increasing interest in biomimetic hydrogels with impregnated antimicrobial nanoparticles and antibiotics, which possess good biocompatibility, high degradability, and low toxicity, as well as good antibacterial activity against various bacteria. The biomimetic hydrogels would potentially be promising for biomedical applications such as wound healing, tissue engineering, and payload delivery systems. In this study, we designed a type of hydrogels based on PEG-catechol group modified gelatin and in situ formation of antimicrobial nanoparticles (Ag NPs) for antimicrobial application, as well as encapsulation of a drug (DOX-anticancer agent) for drug delivery. The Ag NP-loaded gelatin-PEG-catechol hydrogels were formed through in situ formations of Ag NPs in the polypeptide solutions, followed by an enzymatic cross-linked reaction between HRP enzyme and oxidizing agent H2O2. The experimental results showed that the antimicrobial Ag NPs could be formed in the polypeptide solutions without adding toxic reducing agents and/or additional processes such as UV or thermal treatment. The results also showed that the gelation time, mechanical strength, adhesive strength, swelling ratio, and enzymatic degradation behavior of hydrogels can be tuned by varying enzyme/oxidative agent concentration, catechol content, and redox reaction conditions including redox reaction time and initial Ag+ ion concentration. In particular, the Ag NP-loaded gelatin-PEG-catechol hydrogels exhibited excellent antibacterial activities against both gram-negative and positive bacteria. For the injectable DOX-encapsulated hydrogels, the hydrogels could be simply formed via coordinated/oxidized cross-linking by Fe3+ ions and H2O2 with short gelation time. It was found that the DOX was loaded onto the hydrogel network by metal-DOX/catechol complexes. The mechanical strength, swelling ratio, and degradability behavior could be controlled by varying Fe3+/H2O2 concentration. It was found that the DOX release can be controlled by varying the solution pH.
論文目次 Abstract I
中文摘要 II
Acknowledgements III
List of Contents IV
List of Tables VII
List of Figures VIII
List of Schemes XI
Abbreviation and symbol index XII
Appendix index XIV
Chapter 1: Introduction 1
1.1 Overview 1
1.2 Research motivation 3
1.3 Outlines 4
Chapter 2: Literature Review 5
2.1 Hydrogels 5
2.1.1 Gelatin 6
2.1.2 Poly (ethylene glycol) 8
2.1.3 Catechol groups (1, 2-dihydroxybenzene) 9
2.2 Antimicrobial materials 10
2.3 Drug delivery system 12
Chapter 3: Methodology 14
3.1 Materials 14
3.2 Experimental instruments and principles 15
3.2.1 Nuclear magnetic resonance spectrometer (NMR) 15
3.2.2 Ultraviolet-visible spectroscopy (UV-Vis) 16
3.2.3 Rheometer 18
3.2.4 Transmission electron microscopy (TEM) 18
3.2.5 Ultra high resolution field emission scanning electron microscopy (FE-SEM) 19
3.2.6 X-ray diffraction (XRD 20
3.3. Experimental Section 21
3.3.1 Preparing the anhydrous solvents 21
3.3.2 Activation of the polyethylene glycol 22
3.3.3 Synthesis and characterization of PEG-catechol group modified polypeptides 23
3.3.4 Preparation of HRP/H2O2-mediated and Ag NP-loaded hydrogels 24
3.3.5 Preparation of Fe3+/H2O2-mediated and DOX-encapsulated hydrogels 25
3.3.6 Characterization of PEG-catechol group modified hydrogels 25
3.3.6.1 Rheology properties 25
3.3.6.2 Tissue adhesion measurement 26
3.3.6.3 Morphological characterization 26
3.3.6.4 Swelling ratio test 27
3.3.6.5 In vitro enzymatic degradation test 27
3.3.7 Characterization of Ag NP within hydrogels 27
3.3.8 In vitro antibacterial activity test 28
3.3.9 In vitro biocompatibility test 28
3.3.10 In vitro drug release kinetics 29
Chapter 4: Results and Discussion 30
4.1 Synthesis and characterization of catechol modified polypeptides 30
4.2 In situ enzymatically cross-linked hydrogel formation and characterization 35
4.2.1 Preparation and gelation time of enzymatically cross-linked and Ag NP-loaded hydrogels 35
4.2.2 The microstructure of enzymatic cross-linked catechol modified hydrogels 38
4.2.3 Characterization of Ag NPs within hydrogel networks 38
4.2.4 The mechanical and adhesion strength of hydrogels 41
4.3 Swelling behavior 44
4.4 In vitro degradation behavior 45
4.5 Cell biocompatibility and antibacterial activity 46
4.6 Synthesis and characterization of Fe3+ cross-linked and DOX-encapsulated hydrogels 49
4.6.1 Preparation of GPLD-Fe3+ and DOX/GPLD-Fe3+ hydrogels 49
4.6.2 The mechanical strength of Fe3+/DOX-GPLD hydrogels 50
4.6.3 The swelling behavior 51
4.6.4 In vitro degradation behavior 52
4.6.5 In vitro drug release 52
Conclusion 54
Suggestion for future research 56
Reference 57
參考文獻 1. Great Tide Instrument Co., L., UV-Vis spectrophotometer. 2018.
2. In http://www.hplc.com.tw/product-72-21.html.
3. Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015, 6 (2), 105-21.
4. El-Sherbiny, I. M.; Yacoub, M. H., Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013, 2013 (3), 316-42.
5. Lih, E.; Lee, J. S.; Park, K. M.; Park, K. D., Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta biomaterialia 2012, 8 (9), 3261-9.
6. S. M. Bindu; V. Ashok; Chatterjee, A., As a review on hydrogels as drug delivery in the pharmaceutical field. International journal of pharmaceutical and chemical sciences 2012, 1 (2), 642-660.
7. Lin, C. C.; Metters, A. T., Hydrogels in controlled release formulations: network design and mathematical modeling. Advanced drug delivery reviews 2006, 58 (12-13), 1379-408.
8. P. Ghasemiyeh; Samani, S. M., Hydrogels as Drug delivery systems; Pros and Cons. Trends in Pharmaceutical Sciences 2019, 5 (1), 7-24.
9. Narayanaswamy, R.; Torchilin, V. P., Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019, 24 (3).
10. B. Mishra; M. Upadhyay; A. SK. Reddy; B. G. Vasant; Muthu, M. S., Hydrogels: An introduction to a Controlled drug delivery device, synthesis and application in drug delivery and tissue engineering. Austin Journal of Biomedical Engineering 2017, 4 (1), 1-13.
11. H.W.Ooi, S. H., C. A. van Blitterswijk, L. Moroni and B. Baker, Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. R. Soc. Chem. 2017, 4 (6), 1020-1040.
12. Le Thi, P.; Lee, Y.; Hoang Thi, T. T.; Park, K. M.; Park, K. D., Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity. Mater Sci Eng C Mater Biol Appl 2018, 92, 52-60.
13. Yuan, L.; Wu, Y.; Fang, J.; Wei, X.; Gu, Q.; El-Hamshary, H.; Al-Deyab, S. S.; Morsi, Y.; Mo, X., Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artif Cells Nanomed Biotechnol 2017, 45 (1), 76-83.
14. Yang, X.; Zhu, L.; Tada, S.; Zhou, D.; Kitajima, T.; Isoshima, T.; Yoshida, Y.; Nakamura, M.; Yan, W.; Ito, Y., Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces. Int J Nanomedicine 2014, 9, 2753-65.
15. Chan Choi, Y.; Choi, J. S.; Jung, Y. J.; Cho, Y. W., Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ion crosslinking. J. Mater. Chem. B 2014, 2 (2), 201-209.
16. Park, K. M.; Ko, K. S.; Joung, Y. K.; Shin, H.; Park, K. D., In situ cross-linkable gelatin–poly(ethylene glycol)–tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. Journal of Materials Chemistry 2011, 21 (35), 13180.
17. Zhu, J., Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31 (17), 4639-56.
18. Huang, Y. F.; Lu, S. C.; Huang, Y. C.; Jan, J. S., Cross-linked, self-fluorescent gold nanoparticle/polypeptide nanocapsules comprising dityrosine for protein encapsulation and label-free imaging. Small 2014, 10 (10), 1939-44.
19. Zhou, C.; Li, P.; Qi, X.; Sharif, A. R.; Poon, Y. F.; Cao, Y.; Chang, M. W.; Leong, S. S.; Chan-Park, M. B., A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials 2011, 32 (11), 2704-12.
20. Jan, J. S.; Chen, P. J.; Ho, Y. H., Bioassisted synthesis of catalytic gold/silica nanotubes using layer-by-layer assembled polypeptide templates. J Colloid Interface Sci 2011, 358 (2), 409-15.
21. Jan, J. S.; Chuang, T. H.; Chen, P. J.; Teng, H., Layer-by-layer polypeptide macromolecular assemblies-mediated synthesis of mesoporous silica and gold nanoparticle/mesoporous silica tubular nanostructures. Langmuir 2011, 27 (6), 2834-43.
22. Ye, H.; Cheng, J.; Yu, K., In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. International journal of biological macromolecules 2019, 121, 633-642.
23. Veiga, A. S.; Schneider, J. P., Antimicrobial hydrogels for the treatment of infection. Biopolymers 2013, 100 (6), 637-44.
24. Malmsten, M., Antimicrobial and antiviral hydrogels. Soft Matter 2011, 7 (19), 8725.
25. Yang, K.; Han, Q.; Chen, B.; Zheng, Y.; Zhang, K.; Li, Q.; Wang, J., Antimicrobial hydrogels: promising materials for medical application. International journal of nanomedicine 2018, 13, 2217-2263.
26. G. L. Y. Woo; M. W. Mittelman; Santerre, J. P., Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials 2000, 21 (12), 1235-1246.
27. Campbell., A. A.; L. Song; X. S. Li; B. J. Nelson; C. Bottoni; D. E. Brooks; Dejong, E. S., Development, Characterization, and Anti-Microbial Efficacy of Hydroxyapatite-Chlorhexidine Coatings Produced by Surface-Induced Mineralization. J Biomed Mater Res 2000, 53, 400-407.
28. Ng, V. W.; Chan, J. M.; Sardon, H.; Ono, R. J.; Garcia, J. M.; Yang, Y. Y.; Hedrick, J. L., Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Advanced drug delivery reviews 2014, 78, 46-62.
29. Caló, E.; Khutoryanskiy, V. V., Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal 2015, 65, 252-267.
30. Gan, D.; Xing, W.; Jiang, L.; Fang, J.; Zhao, C.; Ren, F.; Fang, L.; Wang, K.; Lu, X., Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun 2019, 10 (1), 1487.
31. Patil, N.; Jérôme, C.; Detrembleur, C., Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Progress in Polymer Science 2018, 82, 34-91.
32. K. M. Park, Y. M. S., Y. K. Joung, H. shin, K. D. Park, In Situ Forming Hydrogels Based on Tyramine Conjugated 4-Arm-PPO-PEO via Enzymatic Oxidative Reaction. Biomacromolecules 2011, 11, 706-712.
33. D. Q. Wu, Y. X. S., X. D. Xu, S. X. Cheng, X. Zh. Zhang, and R. X. Zhuo, Biodegradable and pH-Sensitive Hydrogels for Cell Encapsulation and Controlled Drug Release. Biomacromolecules 2008, 9, 1155–1162.
34. Reinhard Schieber; Gareis, H., Gelatin Handbook: Theory and Industrial Practice. 2007.
35. Kozlov, P. V., The structure and properties of solid gelatin and the principles of their modification. Polymer 1983, 24.
36. Sebastian, M., Industrial Gelatin Manufacture-Theory and Practice. 2014.
37. Lee, Y.; Bae, J. W.; Oh, D. H.; Park, K. M.; Chun, Y. W.; Sung, H.-J.; Park, K. D., In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. Journal of Materials Chemistry B 2013, 1 (18), 2407.
38. Kim, J. Y.; Ryu, S. B.; Park, K. D., Preparation and characterization of dual-crosslinked gelatin hydrogel via Dopa-Fe3+ complexation and fenton reaction. Journal of Industrial and Engineering Chemistry 2018, 58, 105-112.
39. Fan, C.; Wang, D.-A., Novel Gelatin-based Nano-gels with Coordination-induced Drug Loading for Intracellular Delivery. Journal of Materials Science & Technology 2016, 32 (9), 840-844.
40. Wade, L. G., Organic Chemistry
2011.
41. Park, K. e. a., Controlled Drug Delivery, Copyright, Foreword. In Controlled Drug Delivery, 2000; pp i-v.
42. Thompson, M. S.; Vadala, T. P.; Vadala, M. L.; Lin, Y.; Riffle, J. S., Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers. Polymer 2008, 49 (2), 345-373.
43. Rajendran, S.; Kannan, R.; Mahendran, O., Ionic conductivity studies in poly(methylmethacrylate)-polyethylene oxide hybrid polymer electrolytes with lithium salts. Journal of Power sources 2001, 96 (2), 406-410.
44. Liu, Y.; Shipton, M. K.; Ryan, J.; Kaufman, E. D.; Franzen, S.; Feldheim, D. L., Synthesis, Stability, and Cellular Internalization of Gold Nanoparticles Containing Mixed Peptide-Poly(ethylene glycol) Monolayers. Analytical Chemistry 2007, 79 (6), 2221-2229.
45. Stevenson, A. T.; Jankus, D. J.; Tarshis, M. A.; Whittington, A. R., The correlation between gelatin macroscale differences and nanoparticle properties: providing insight into biopolymer variability. Nanoscale 2018, 10 (21), 10094-10108.
46. Huang, Y.-C.; Yang, Y.-S.; Lai, T.-Y.; Jan, J.-S., Lysine-block-tyrosine block copolypeptides: Self-assembly, cross-linking, and conjugation of targeted ligand for drug encapsulation. Polymer 2012, 53 (4), 913-922.
47. Huh, A. J.; Kwon, Y. J., "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release : official journal of the Controlled Release Society 2011, 156 (2), 128-45.
48. Taglietti, A.; Diaz Fernandez, Y. A.; Amato, E.; Cucca, L.; Dacarro, G.; Grisoli, P.; Necchi, V.; Pallavicini, P.; Pasotti, L.; Patrini, M., Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria. Langmuir : the ACS journal of surfaces and colloids 2012, 28 (21), 8140-8.
49. Li, J.; Mooney, D. J., Designing hydrogels for controlled drug delivery. Nature reviews. Materials 2016, 1 (12).
50. N. A. Peppas; P. Bures; W. Leobandung; Ichikawa, H., Hydrogels in pharmeceutical formulations. European Journal of Pharmaceutucs 2000, 50, 27-46.
51. Liang, Y.; Jeong, J.; DeVolder, R. J.; Cha, C.; Wang, F.; Tong, Y. W.; Kong, H., A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials 2011, 32 (35), 9308-15.
52. Figura, L. O.; Teixeira, A. A., Food Physics: Physical properties-Measurement and Applications
2007.
53. McClure, C. K., Structural Chemistry Using NMR Spectroscopy, Organic Molecules. In Encyclopedia of Spectroscopy and Spectrometry, 2017; pp 281-292.
54. Corp., B. B., Magnetic Resonance. 2013.
55. Caro, C. A. D., UV-Vis Spectrophotometry-Fundamentals and Applications. 2015.
56. Nguyen, M. K.; Alsberg, E., Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci 2014, 39 (7), 1236-1265.
57. Chen, D. T. N.; Wen, Q.; Janmey, P. A.; Crocker, J. C.; Yodh, A. G., Rheology of Soft Materials. Annual Review of Condensed Matter Physics 2010, 1 (1), 301-322.
58. Vicente, J. S., Rheology. Intech 2012.
59. Gerhard Hubschen; Iris Altpeter; Ralf Tschencky; Herrmann, H.-G., Materials Characterization Using Nondestructive Evaluation (NDE) Methods. 1 ed.; Woodhead Publishing: 2006; p 320.
60. Cao, G., Nanostructures and nanomaterials synthesis, properties & applications. Im[erial College Press: 2004; p 448.
61. Ewald, P. P., Theory of X-ray Diffraction. Nature 1942, 150, 450-451.
62. Park, K. M.; Ko, K. S.; Joung, Y. K.; Shin, H.; Park, K. D., In situ cross-linkable gelatin–poly(ethylene glycol)–tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. Journal of Materials Chemistry 2011, 21 (35).
63. Wang, R.; Li, J.; Chen, W.; Xu, T.; Yun, S.; Xu, Z.; Xu, Z.; Sato, T.; Chi, B.; Xu, H., A Biomimetic Mussel-Inspired ε-Poly-l-lysine Hydrogel with Robust Tissue-Anchor and Anti-Infection Capacity. Advanced Functional Materials 2017, 27 (8).
64. Wang, R.; Li, J.; Chen, W.; Xu, T.; Yun, S.; Xu, Z.; Xu, Z.; Sato, T.; Chi, B.; Xu, H., A Biomimetic Mussel-Inspired ε-Poly-l-lysine Hydrogel with Robust Tissue-Anchor and Anti-Infection Capacity. Advanced Functional Materials 2017, 27 (8), 1604894.
65. Park, K. M.; Lee, Y.; Son, J. Y.; Bae, J. W.; Park, K. D., In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization. Bioconjug Chem 2012, 23 (10), 2042-50.
66. Lee, Y.; Bae, J. W.; Lee, J. W.; Suh, W.; Park, K. D., Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy. J. Mater. Chem. B 2014, 2 (44), 7712-7718.
67. Lee, F.; Bae, K. H.; Kurisawa, M., Injectable hydrogel systems crosslinked by horseradish peroxidase. Biomedical materials 2015, 11 (1), 014101.
68. Garcia-Leis, A.; Jancura, D.; Antalik, M.; Garcia-Ramos, J. V.; Sanchez-Cortes, S.; Jurasekova, Z., Catalytic effects of silver plasmonic nanoparticles on the redox reaction leading to ABTS (+) formation studied using UV-visible and Raman spectroscopy. Physical chemistry chemical physics : PCCP 2016, 18 (38), 26562-26571.
69. Siddiqi, K. S.; Husen, A.; Rao, R. A. K., A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology 2018, 16 (1), 14.
70. K. S. Anseth, C. N. B. a. L. B. P., Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996, 17, 1647-1657.
71. Weng, L.; Pan, H.; Chen, W., Self-crosslinkable hydrogels composed of partially oxidized hyaluronan and gelatin: in vitro and in vivo responses. Journal of biomedical materials research. Part A 2008, 85 (2), 352-65.
72. X. Jia, J. A. B., J. Kobler, R. J. Clifton, J. J. Rosowski, S. M. Zeitels and R. Langer, Synthesis and Characterization of in Situ Cross-Linkable Hyaluronic Acid-Based Hydrogels with Potential Application for Vocal Fold Regeneration. Macromolecules 2004, 37, 3239-3248.
73. Garcia-Astrain, C.; Chen, C.; Buron, M.; Palomares, T.; Eceiza, A.; Fruk, L.; Corcuera, M. A.; Gabilondo, N., Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromolecules 2015, 16 (4), 1301-10.
74. Shen, J.-S.; Chen, Y.-L.; Huang, J.-L.; Chen, J.-D.; Zhao, C.; Zheng, Y.-Q.; Yu, T.; Yang, Y.; Zhang, H.-W., Supramolecular hydrogels for creating gold and silver nanoparticles in situ. Soft Matter 2013, 9 (6), 2017.
75. Reithofer, M. R.; Lakshmanan, A.; Ping, A. T.; Chin, J. M.; Hauser, C. A., In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties. Biomaterials 2014, 35 (26), 7535-42.
76. Song, J.; Zhang, P.; Cheng, L.; Liao, Y.; Xu, B.; Bao, R.; Wang, W.; Liu, W., Nano-silver in situ hybridized collagen scaffolds for regeneration of infected full-thickness burn skin. Journal of Materials Chemistry B 2015, 3 (20), 4231-4241.
77. Ahmad, M. B.; Tay, M. Y.; Shameli, K.; Hussein, M. Z.; Lim, J. J., Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int J Mol Sci 2011, 12 (8), 4872-84.
78. Hong, S. H.; Ryu, J. H.; Lee, H., Effect of charge on in vivo adhesion stability of catechol-conjugated polysaccharides. Journal of Industrial and Engineering Chemistry 2019, 79, 425-430.
79. Numata, K.; Baker, P. J., Synthesis of adhesive peptides similar to those found in blue mussel (Mytilus edulis) using papain and tyrosinase. Biomacromolecules 2014, 15 (8), 3206-12.
80. Mehdizadeh, M.; Weng, H.; Gyawali, D.; Tang, L.; Yang, J., Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 2012, 33 (32), 7972-83.
81. Cui, J.; Yan, Y.; Such, G. K.; Liang, K.; Ochs, C. J.; Postma, A.; Caruso, F., Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules 2012, 13 (8), 2225-8.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-01-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw