進階搜尋


 
系統識別號 U0026-1210201816040800
論文名稱(中文) 空載光達應用於亞熱帶森林之數值高程模型與立木密度資料之產製
論文名稱(英文) Generation of Digital Elevation Model and Stand Density in Subtropical Forest Using Airborne Laser Scanner
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 107
學期 1
出版年 107
研究生(中文) 李崇誠
研究生(英文) Chung-Cheng Lee
學號 P68981019
學位類別 博士
語文別 英文
論文頁數 91頁
口試委員 召集委員-陳朝圳
口試委員-林金樹
口試委員-張智安
口試委員-林昭宏
指導教授-王驥魁
中文關鍵字 立木密度  數值高程模型  亞熱帶森林  飛航規劃  雷射穿透率指標  空載雷射掃瞄儀 
英文關鍵字 stand density  digital elevation model  subtropical forest  flight planning  laser penetration index  airborne laser scanning 
學科別分類
中文摘要 在亞熱帶森林中空載雷射掃瞄儀(airborne laser scanning, ALS)受限於高密度植生造成雷射脈衝不易穿透樹冠層到達地表,然而空載雷射掃瞄儀在飛航掃瞄規劃時,通常僅設定硬體的各項掃瞄參數以達成規劃之雷射掃瞄密度(pulse density),並無考量雷射脈衝穿透森林的能力。因此,本研究以台灣南部之曾文水庫為測試樣區,並設計九條往返重疊飛行之航線,分別航高為1525、1830、2135、2440與2745 m;脈衝重複頻率100、150、200與250 kHz,以雷射穿透率指標(laser penetration index, LPI)探討航高和脈衝重複頻率(pulse repetition frequency, PRF)二者影響雷射穿透率指標程度。雷射穿透率指標的計算方式為雷射脈衝接觸森林地表之數量除以雷射脈衝發射之數量。結果顯示航高每減少1000 m,平均雷射穿透率指標會增加10 %;PRF每減少50 kHz,平均雷射穿透率指標會增加2%。另外,在各航高產製之數值高程模型(digital elevation model, DEM)其視覺上的比較,當航高1525 m時紋理較為細緻,而航高2745 m時為粗糙的表面。用現地調查資料與空載雷射掃瞄儀產製的數值高程模型進行比較,結果顯示當雷射穿透率指標大於0.6時,二者無高程差異,但當雷射穿透率指標小於0.6時,空載雷射掃瞄儀產製之數值地形模型會高於或低於現地調查資料,二者之高程差異最大可達1.7 m。因此,在大面積掃瞄雷射掃瞄儀資料時必須考慮雷射穿透率指標之大小才能獲得精確度一致之數值高程模型。
然而,植生的密度亦會影響到雷射穿透率指標程度之大小,並且雷射穿透率指標越高的區域所獲得的地面點相對增加,而在雷射穿透率指標越低的區域執行飛航任務時,可以增加入射森林之雷射光能量(如降低航高與減少脈衝重複頻率)的方式來提升雷射穿透率,有助於於數值高程模型產製的精度。另外,雷射穿透率指標屬於執行飛航任務事後獲得的資訊,因此,本研究探討衛星影像植生指標(vegetation index, VI)與雷射穿透率指標之關係,主要目的為利用衛星影像尋找雷射穿透率指標較低的區域,提供飛航任務規劃在該區域增加入射森林之雷射光能量。總共測試台灣南部與北部兩個樣區,分別為南部曾文水庫樣區與北部金山的火山樣區,掃瞄面積分別為21 square-kilometer與36 square-kilometer,並取得Fomosat-2、SPOT-5、Worldview-2與GeoEye共四種七幅衛星影像,以ACTOR-3大氣糾正處理後分別計算四種植生指標(NDVI、RVI、PVI與SAVI),衛星影像拍攝時間與空載光雷射掃瞄儀執行任務時間相近。結果顯示衛星影像需經過ACTOR-3大氣糾正處理去消除水氣和地形陰影之影響,並以Pearson相關性檢定其植生指標與雷射穿透率指標之相關,結果為兩指數有顯著負相關性,表示當雷射穿透率指標越高時其植生指標相對減少,並以線性回歸探討兩者之關係,其R-square值均高於0.8以上,代表衛星影像植生指標與雷射穿透率指標有高度之相關。
亞熱帶區域其森林多數為闊葉林,並且森林生物量、碳匯計算與災害風倒木數量等森林相關之統計量,可藉由計算立木密度獲得。另一方面,利用空載雷射掃瞄儀之資料推估立木密度時,數值地形模型(digital terrain model, DTM)的產製方式與飛航規劃時點雲資料之密度應該被考慮。研究樣區位於台灣北部新店山區之亞熱帶闊葉林,利用空載雷射掃瞄儀獲得雷射脈衝密度為225.5 pulses/square-meter的資料,用其第一回波、最後回波與最高第一回波資料產製三種數值地表模型(digital surface model, DSM);另用其地面點產製數值高程模型,三種數值地表模型各減去數值高程模型獲得三種樹冠高度模型(canopy height model, CHM),三種樹冠高度模型各有1 m、0.5 m與0.2 m的網格大小,並使用樹冠高度模型資料以局部最大值法計算立木密度。現地共調查35個樣區(10 × 10 m)的立木密度,並評估空載雷射掃瞄儀計算的立木密度與現地調查的立木密度其均方根誤差(root-mean-square error, RMSE)。結果顯示,三種樹冠高度模型與三種網格大小在推估立木密度時其RMSE介於1.68至2.43 (trees/100 square-meter),RMSE只差距0.78 (trees/100 square-meter),表示三種樹冠高度模型與三種網格大小均可有效推估立木密度。另外,利用回歸模型糾正立木密度推估之誤差,糾正後的RMSE稱為RMSE',RMSE與RMSE'相比,其平均值由12.35 (trees/100 square-meter)降低為2.66 (trees/100 square-meter),表示回歸模型有效降低誤差值。最後,比較各種雷射脈衝密度對於RMSE值的影響,在1 m、0.5 m與0.2 m網格大小時,雷射脈衝密度分別須10、30與125 pulses/square-meter以上,其計算之立木密度才為最小的RMSE值(誤差最低)。
英文摘要 In subtropical forests, the penetration ability of airborne laser scanning (ALS) may be limited because of highly dense vegetation cover. However, in the typical planning of ALS surveys, the ability of laser pulses to penetrate forests is not considered. Nine round-trip flight lines covering the area of a subtropical forest on the northeast side of the Tsengwen Reservoir in Taiwan were designed in this study. Five flight lines flew at altitudes of 1525, 1830, 2135, 2440, and 2745 m, and the other four had pulse repetition frequencies (PRFs) of 100, 150, 200, and 250 kHz. The laser penetration index (LPI) is a quantitative index measuring the penetration ability of the ALS and consists of the ratio of the number of laser pulses reaching the forest floor to the total number of laser pulses. The LPI was used to represent the laser penetration rate and investigate the influence of flying altitude and PRF on the LPI. The results showed that as the flying altitude decreased by 1000 m, the average LPI increased by 10%, and as the PRF decreased by 50 kHz, the average LPI increased by 2%. The effect of the LPI on digital elevation models (DEMs) was confirmed by visual images obtained by DEMs at five altitudes. The DEM obtained at an altitude of 2745 m was coarsely textured, whereas that obtained at an altitude of 1525 m was finely textured. The LPI of a forest should be considered for ALS survey planning, especially when consistent DEM precision for large subtropical forest areas is paramount.
In addition, the forest canopy also affects the LPI of ALS. The denser the forest canopy, the lower the LPI, and vice versa. For an ALS survey project, with the goal to acquire sufficient ground surface points, the flight planning should be conducted according to the distribution forest canopy thickness. The information of forest canopy can be easily accessed via the satellite-derived vegetation index (VI). In this study, we examined the correction relationship between the satellite-derived VI and LPI. The two study areas were 21 square-kilometer located in Tsengwen reservoir and 36 square-kilometer located in Jinshan volcanic region. The ALS data were collected with an Optech HD400 instrument. The VIs were calculated from Formsat-2, SPOT-5, WorldView-2 and GeoEye, all of which were acquired near the time of ALS data acquisition. This study calculated four VIs, i.e., NDVI, RVI, PVI, and SAVI. The effect of atmospheric correction (conducted by ATCOR-3) were also discussed. The results show high linear correlation between LPI and VIs. It is suggested that in future ALS flight plans, we can refer to satellite VIs to understand the canopy density of forest in a given survey area, when those places with a high VI, decide whether we need to use a lower flight altitude or reduce the PRF.
Furthermore, the final aim of this study was using ALS data to estimate stand density in a subtropical forest. The forest-related statistics, including forest biomass, carbon sink, and the prevention of forest fires, can be obtained by estimating stand density. In this study, a dataset with the laser pulse density of 225.5 pulses/square-meter was obtained using airborne laser scanning in Xindian District of New Taipei City, Taiwan. Three digital surface models (DSMs) were generated using first-echo, last-echo, and highest first-echo data. Three canopy height models (CHMs) were obtained by deducting the DEM from the three DSMs. The cell sizes (Csizes) of the CHMs were 1, 0.5, and 0.2 m. In addition, stand density was estimated using CHM data and following the local maximum method. The stand density of 35 sample regions was acquired via in-situ measurement. The results indicated that the root-mean-square error (RMSE) ranged between 1.68 and 2.43 (trees/100 square-meter); the RMSE difference was only 0.78 (trees/100 square-meter), indicating that stand density was effectively estimated in both cases. Furthermore, regression models were used to correct the error in stand density estimations; the RMSE after correction was called RMSE'. A comparison of the RMSE and RMSE' showed that the average value decreased from 12.35 to 2.66 (trees/100 square-meter), meaning that the regression model could effectively reduce the error. Finally, a comparison of the effects of different laser pulse densities on the RMSE value showed that, in order to obtain the minimum RMSE for stand density, the laser pulse density must be greater than 10, 30, and 125 pulses/square-meter at Csizes of 1, 0.5, and 0.2 m, respectively.
論文目次 摘要 i
Abstract iii
致謝 v
Contents vi
List of Tables ix
List of Figures x
List of Acronyms xiv
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Laser Power 2
1.1.2 LiDAR Equation 3
1.2 Contributions 4
1.2.1 Subtropical Forest DEM Generation by ALS 4
1.2.2 LPI Estimation from Vegetation Index 5
1.2.3 Subtropical Forest Stand Density Estimation by ALS 6
1.3 Organization 7
Chapter 2 Effect of Flying Altitude and Pulse Repetition Frequency on Laser Scanner Penetration Rate for Digital Elevation Model Generation in a Subtropical Forest 8
2.1. Introduction 8
2.2. Study Area and Data 11
2.2.1. Study Area 11
2.2.2. ALS Dataset 13
2.2.3. In-situ Height Measurement of Bare Ground in the Forest 15
2.3. Methodology 16
2.3.1. LPI 16
2.3.2. Data Analysis 17
2.3.3. Point Cloud Resampling 18
2.4. Results 18
2.4.1. LPI at Different Flying Altitudes 18
2.4.2. LPI at Different PRFs 23
2.4.3. LPIs of Three Different Types of Vegetation 25
2.4.4. Accuracy of ALS-Derived DEM with Different LPIs 26
2.4.5. Impact of Flying Altitude on Multiple Returns 28
2.4.6. DEM Quality in Relation to Five Flying Altitudes 30
2.5. Discussions 31
Chapter 3 Assessment of the Relationship between Satellite-derived Vegetation Index and LiDAR-based Laser Penetration Index in Evergreen Broadleaf Forest 33
3.1. Introduction 33
3.2. Materials and Methods 34
3.2.1. Study Areas 34
3.2.2. ALS Dataset 35
3.2.3. Satellite Imagery Data 37
3.2.4. Atmospheric Correction and Vegetation Indices Calculation 37
3.2.5. Laser Penetration Index 38
3.3. Results 39
3.3.1. Result of LPI Calculation 39
3.3.2. Using ACTOR-3 to Correct the Satellite Images 41
3.3.3. Relation between LPI and Vegetation Indices 43
Chapter 4 Estimating Stand Density in a Subtropical Broadleaf Forest Using Airborne LiDAR Data 48
4.1. Introduction 48
4.2. Materials 52
4.2.1. Study Area 52
4.2.2. ALS Dataset 54
4.2.3. In-situ measurements 54
4.3. Methods 55
4.3.1. Steps of Stand Density Estimation 55
4.3.2. DSM, DEM, and CHM Generation 56
4.3.3. Treetop Extraction Using the Local Maximum Method 56
4.3.4. Regression Based Correction Method 57
4.3.5. Error Assessment 57
4.3.6. Leave-One-Out Cross-Validation 58
4.3.7. Numerical LiDAR Data Thinning 60
4.4. Results 60
4.4.1. Comparison of Three Types CHM Data 60
4.4.2. Stand Density by Local Maximum Method 61
4.4.3. Using Leave-One-Out Cross-Validation to Test Stand Density Errors 63
4.4.4. Stand Density Map by the Regression-Based Correction Method 64
4.4.5. Error Assessment of Stand Density Estimation at Different Laser Pulse Densities 70
4.5. Discussions 70
Chapter 5 Conclusions and Future Works 73
5.1 Conclusions 73
5.2 Future Works 77
Bibliography 78
參考文獻 Alonzo, M., B. Bookhagen, J. P. McFadden, A. Sun, and D. A. Roberts. "Mapping Urban Forest Leaf Area Index with Airborne LiDAR Using Penetration Metrics and Allometry." Remote Sensing of Environment 162:141-153, 2015. doi:10.1016/j.rse.2015.02.025
Andersen, H. E., S. E. Reutebuch, and R. J. McGaughey. "A Rigorous Assessment of Tree Height Measurements Obtained Using Airborne LiDAR and Conventional Field Methods." Canadian Journal of Remote Sensing 32 (5):355-366, 2006. doi:/10.5589/m06-030
Anderson, S., and J. Pitlick. "Using Repeat LiDAR to Estimate Sediment Transport in a Steep Stream." Journal of Geophysical Research-Earth Surface 119 (3):621-643, 2014. doi:10.1002/2013JF002933
ASPRS. Las Specification Version 1.4. Maryland, USA: American Society for Photogrammetry and Remote Sensing. Press. 2011.
Baltsavias, E. P. "Airborne Laser Scanning: Existing Systems and Firms and Other Resources." Isprs Journal of Photogrammetry and Remote Sensing 54 (2-3):164-198, 1999. doi:10.1016/S0924-2716(99)00016-7
Barnes, C., H. Balzter, K. Barrett, J. Eddy, S. Milner, and J. C. Suarez. "Individual Tree Crown Delineation from Airborne Laser Scanning for Diseased Larch Forest Stands." Remote Sensing 9 (3):231, 2017. doi:10.3390/rs9030231
Chasmer, L., C. Hopkinson, B. Smith, and P. Treitz. "Examining the Influence of Changing Laser Pulse Repetition Frequencies on Conifer Forest Canopy Returns." Photogrammetric Engineering and Remote Sensing 72 (12):1359-1367, 2006. doi:10.14358/PERS.72.12.1359
Cheng, X. R., M. K. Yu, and T. G. Wu. "Effect of Forest Structural Change on Carbon Storage in a Coastal Metasequoia Glyptostroboides Stand." Scientific World Journal, 2013. doi:10.1155/2013/830509
Chrysafis, I., G. Mallinis, I. Gitas, and M. Tsakiri-Strati. "Estimating Mediterranean Forest Parameters Using Multi Seasonal Landsat 8 Oli Imagery and an Ensemble Learning Method." Remote Sensing of Environment 199:154-166, 2017. doi:10.1016/j.rse.2017.07.018
Chu, H. J., C. K. Wang, M. L. Huang, C. C. Lee, C. Y. Liu, and C. C. Lin. "Effect of Point Density and Interpolation of LiDAR-derived High-resolution DEMs on Landscape Scarp Identification." Giscience & Remote Sensing 51 (6):731-747, 2014. doi:10.1080/15481603.2014.980086
Clark, M. L., D. B. Clark, and D. A. Roberts. "Small-footprint LiDAR Estimation of Sub-canopy Elevation and Tree Height in a Tropical Rain Forest Landscape." Remote Sensing of Environment 91 (1):68-89, 2004. doi:10.1016/j.rse.2004.02.008
Cohen, J. "Things I Have Learned (So Far)." American psychologist 45 (12):1304, 1990. doi:10.1037/0003-066X.45.12.1304
Espirito-Santo, F. D. B., M. Gloor, M. Keller, Y. Malhi, S. Saatchi, B. Nelson, R. C. Oliveira, et al. "Size and Frequency of Natural Forest Disturbances and the Amazon Forest Carbon Balance." Nature Communications 5 (3434):1-6, 2014. doi:10.1038/ncomms4434
Fernandez-Diaz, J. C., W. E. Carter, C. Glennie, R. L. Shrestha, Z. Pan, N. Ekhtari, A. Singhania, D. Hauser, and M. Sartori. "Capability Assessment and Performance Metrics for the Titan Multispectral Mapping LiDAR." Remote Sensing 8 (11):939, 2016. doi:10.3390/rs8110936
Franklin, O., K. Aoki, and R. Seidl. "A Generic Model of Thinning and Stand Density Effects on Forest Growth, Mortality and Net Increment." Annals of Forest Science 66 (8):815, 2009. doi:10.1051/forest/2009073
Gatziolis, D., and H. E. Andersen. "A Guide to LiDAR Data Acquisition and Processing for the Forests of the Pacific Northwest.", 2008.
Gaveau, D. L. A., and R. A. Hill. "Quantifying Canopy Height Underestimation by Laser Pulse Penetration in Small-footprint Airborne Laser Scanning Data." Canadian Journal of Remote Sensing 29 (5):650-657, 2003.
Gobakken, T., and E. Naesset. "Assessing Effects of Laser Point Density, Ground Sampling Intensity, and Field Sample Plot Size on Biophysical Stand Properties Derived from Airborne Laser Scanner Data." Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 38 (5):1095-1109, 2008. doi:10.1139/X07-219
Gougeon, F. A. "A Crown-Following Approach to the Automatic Delineation of Individual Tree Crowns in High Spatial Resolution Aerial Images." Canadian journal of remote sensing 21 (3):274-284, 1995. doi:10.1080/07038992.1995.10874622
Heritage, G. L., and A. R. G. Large. Laser Scanning for the Environmental Sciences. Chichester, UK ; Hoboken, NJ: Wiley-Blackwell, 2009. doi:10.1002/9781444311952
Höfle, B., and N. Pfeifer. "Correction of Laser Scanning Intensity Data: Data and Model-driven Approaches." ISPRS Journal of Photogrammetry and Remote Sensing 62 (6):415-433, 2007. doi:10.1016/j.isprsjprs.2007.05.008
Hopkinson, C. "The Influence of Flying Altitude, Beam Divergence, and Pulse Repetition Frequency on Laser Pulse Return Intensity and Canopy Frequency Distribution." Canadian Journal of Remote Sensing 33 (4):312-324, 2007. doi:10.5589/m07-029
Hu, X., W. Chen, and W. Xu. "Adaptive Mean Shift-based Identification of Individual Trees Using Airborne LiDAR Data." Remote Sensing 9 (2):148, 2017. doi:10.3390/rs9020148
Huete, A. R. "A Soil-adjusted Vegetation Index (SAVI)." Remote Sensing of Environment 25 (3):295-309, 1988. doi: 10.1016/0034-4257(88)90106-X
Humagain, K., C. Portillo-Quintero, R. D. Cox, and J. W. Cain. "Mapping Tree Density in Forests of the Southwestern USA Using Landsat 8 Data." Forests 8 (8):278, 2017. doi:10.3390/f8080287
Hummel, S., A. T. Hudak, E. H. Uebler, M. J. Falkowski, and K. A. Megown. "A Comparison of Accuracy and Cost of LiDAR Versus Stand Exam Data for Landscape Management on the Malheur National Forest." Journal of Forestry 109 (5):267-273, 2011. doi: 10.1093/jof/109.5.267
Hyyppä, J., X. W. Yu, H. Hyyppä, M. Vastaranta, M. Holopainen, A. Kukko, H. Kaartinen, et al. "Advances in Forest Inventory Using Airborne Laser Scanning." Remote Sensing 4 (5):1190-1207, 2012. doi:10.3390/rs4051190
Ivan, I., A. Singleton, J. Horák, and T. Inspektor. "The Rise of Big Spatial Data", Springer International Publishing, Ostrava. 2016.
Jelalian, A. V. "Laser Radar Systems", Boston: Artech House. 1992.
Jin, Y. X., X. C. Yang, J. J. Qiu, J. Y. Li, T. Gao, Q. Wu, F. Zhao, H. L. Ma, H. D. Yu, and B. Xu. "Remote Sensing-based Biomass Estimation and Its Spatio-temporal Variations in Temperate Grassland, Northern China." Remote Sensing 6 (2):1496-1513, 2014. doi:10.3390/rs6021496
Kahriman, A., A. Gunlu, and U. Karahalil. "Estimation of Crown Closure and Tree Density Using Landsat TM Satellite Images in Mixed Forest Stands." Journal of the Indian Society of Remote Sensing 42 (3):559-567, 2014. doi:10.1007/s12524-013-0355-3
Kar, S. S., and A. Ramalingam. "Is 30 the Magic Number? Issues in Sample Size Estimation." National Journal of Community Medicine 4 (1):175-179, 2013.
Keddy, P. A. Plants and Vegetation : Origins, Processes, Consequences. Cambridge ; New York: Cambridge Univ. Press. 2007.
Keenan, R. J., G. A. Reams, F. Achard, J. V. de Freitas, A. Grainger, and E. Lindquist. "Dynamics of Global Forest Area: Results from the FAO Global Forest Resources Assessment 2015." Forest Ecology and Management 352:9-20, 2015. doi:10.1016/j.foreco.2015.06.014
Khosravipour, A., A. K. Skidmore, M. Isenburg, T. J. Wang, and Y. A. Hussin. "Generating Pit-free Canopy Height Models from Airborne LiDAR." Photogrammetric Engineering and Remote Sensing 80 (9):863-872, 2014. doi:10.14358/PERS.80.9.863
Khosravipour, A., A. K. Skidmore, T. J. Wang, M. Isenburg, K. Khoshelham. "Effect of Slope on Treetop Detection Using a LiDAR Canopy Height Model. " ISPRS Journal of Photogrammetry and Remote Sensing (104): 44-52, 2015. doi:10.1016/j.isprsjprs.2015.02.013
Kim, Y., and Y. D. Eo. "Ground Point Extraction by Iterative Labeling of Airborne LiDAR Data in a Forested Area." KSCE Journal of Civil Engineering 19 (7):2233-2239, 2015. doi:10.1007/s12205-015-0319-y
Koch, B., U. Heyder, and H. Weinacker. "Detection of Individual Tree Crowns in Airborne LiDAR Data." Photogrammetric Engineering and Remote Sensing 72 (4):357-363, 2006. doi:10.14358/PERS.72.4.357
Kraus, K., W. Karel, C. Briese, and G. Mandlburger. "Local Accuracy Measures for Digital Terrain Models." Photogrammetric Record 21 (116):342-354, 2006. doi:10.1111/j.1477-9730.2006.00400.x
Kwak, D. A., W. K. Lee, J. H. Lee, G. S. Biging, and P. Gong. "Detection of Individual Trees and Estimation of Tree Height Using LiDAR Data." Journal of Forest Research 12 (6):425-434, 2007. doi:10.1007/s10310-007-0041-9
le Maire, G., C. Marsden, Y. Nouvellon, C. Grinand, R. Hakamada, J. L. Stape, and J. P. Laclau. "Modis NDVI Time-series Allow the Monitoring of Eucalyptus Plantation Biomass." Remote Sensing of Environment 115 (10):2613-2625, 2011. doi:10.1016/j.rse.2011.05.017
Lee, A. C., and R. M. Lucas. "A LiDAR -derived Canopy Density Model for Tree Stem and Crown Mapping in Australian Forests." Remote Sensing of Environment 111 (4):493-518, 2007. doi:10.1016/j.rse.2007.04.018
Lee, C. C., and C. K. Wang. "Effect of Flying Altitude and Pulse Repetition Frequency on Laser Scanner Penetration Rate for Digital Elevation Model Generation in a Tropical Forest." Giscience & Remote Sensing 55(6):817-838, 2018. doi:10.1080/15481603.2018.1457131
Lee, C. C., C. K. Wang, T. M. Hong, and K. J. Wu. "Assessment of the Relationship between Satellite-derived Vegetation Index and LiDAR-based Laser Penetration Index in Evergreen Broadleaf Forest." Journal of Photogrammetry and Remote Sensing 20 (4):251-262, 2016. doi:10.6574/jprs.2016.20(4).2 (in Chinese)
Lillesand, T., R. W. Kiefer, and J. Chipman. Remote Sensing and Image Interpretation: John Wiley & Sons. 2014.
Lin, C., G. Thomson, and S. C. Popescu. "An IPCC-compliant Technique for Forest Carbon Stock Assessment Using Airborne LiDAR-derived Tree Metrics and Competition Index." Remote Sensing 8 (6):528, 2016. doi:10.3390/rs8060528
Lorimer, C. G., and A. S. White. "Scale and Frequency of Natural Disturbances in the Northeastern US: Implications for Early Successional Forest Habitats and Regional Age Distributions." Forest Ecology and Management 185 (1-2):41-64, 2003. doi:10.1016/S0378-1127(03)00245-7
MacArthur, R. H., and H. S. Horn. "Foliage Profile by Vertical Measurements." Ecology 50 (5):802-804, 1969. doi: 10.2307/1933693
Maguya, A. S., V. Junttila, and T. Kauranne. "Algorithm for Extracting Digital Terrain Models under Forest Canopy from Airborne LiDAR Data." Remote Sensing 6 (7):6524-6548, 2014. doi:10.3390/rs6076524
Maltamo, M. Forestry Applications of Airborne Laser Scanning : Concepts and Case Studies. New York: Springer. 2014.
Mannschatz, T., B. Pflug, E. Borg, K. H. Feger, and P. Dietrich. "Uncertainties of LAI Estimation from Satellite Imaging Due to Atmospheric Correction." Remote Sensing of Environment 153:24-39, 2014. doi: 10.1016/j.rse.2014.07.020
Mohammadi, J., S. S. Joibary, F. Yaghmaee, and A. S. Mahiny. "Modelling Forest Stand Volume and Tree Density Using Landsat ETM Plus Data." International Journal of Remote Sensing 31 (11):2959-2975, 2010. doi:10.1080/01431160903140811
Montealegre, A. L., M. T. Lamelas, and J. de la Riva. "Interpolation Routines Assessment in ALS-derived Digital Elevation Models for Forestry Applications." Remote Sensing 7 (7):8631-8654, 2015. doi:10.3390/rs70708631
Moon, M., T. Kim, J. Park, S. Cho, D. Ryu, and H. S. Kim. "Variation in Sap Flux Density and Its Effect on Stand Transpiration Estimates of Korean Pine Stands." Journal of Forest Research 20 (1):85-93, 2015. doi:10.1007/s10310-014-0463-0
Morsdorf, F., B. Kotz, E. Meier, K. I. Itten, and B. Allgower. "Estimation of LAI and Fractional Cover from Small Footprint Airborne Laser Scanning Data Based on Gap Fraction." Remote Sensing of Environment 104 (1):50-61, 2006. doi:10.1016/j.rse.2006.04.019
Morsdorf, F., E. Meier, B. Allgöwer, and D. Nüesch. "Clustering in Airborne Laser Scanning Raw Data for Segmentation of Single Trees." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34 (part 3 / W 13):27-33, 2003.
Morsdorf, F., O. Frey, E. Meier, K. I. Itten, and B. Allgower. "Assessment of the Influence of Flying Altitude and Scan Angle on Biophysical Vegetation Products Derived from Airborne Laser Scanning." International Journal of Remote Sensing 29 (5):1387-1406, 2008. doi:10.1080/01431160701736349
Naesset, E. "Effects of Different Sensors, Flying Altitudes, and Pulse Repetition Frequencies on Forest Canopy Metrics and Biophysical Stand Properties Derived from Small-footprint Airborne Laser Data." Remote Sensing of Environment 113 (1):148-159, 2009. doi:10.1016/j.rse.2008.09.001
Naesset, E. "Estimating Above-ground Biomass in Young Forests with Airborne Laser Scanning." International Journal of Remote Sensing 32 (2):473-501, 2011. doi:10.1080/01431160903474970
Naesset, E., T. Bjerke, O. Ovstedal, and L. H. Ryan. "Contributions of Differential GPS and GLONASS Observations to Point Accuracy under Forest Canopies." Photogrammetric Engineering and Remote Sensing 66 (4):403-407, 2000.
Nelson, T., B. Boots, and M. A. Wulder. "Techniques for Accuracy Assessment of Tree Locations Extracted from Remotely Sensed Imagery." Journal of environmental management 74 (3):265-271, 2005. doi:10.1016/j.jenvman.2004.10.002
Palace, M., F. B. Sullivan, M. Ducey, and C. Herrick. "Estimating Tropical Forest Structure Using a Terrestrial LiDAR." Plos One 11 (4):e0154115, 2016. doi:10.1371/journal.pone.0154115
Pearson, R. L., and L. D. Miller. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie. Paper presented at the Remote Sensing of Environment, VIII. 1972.
Peduzzi, A., R. H. Wynne, T. R. Fox, R. F. Nelson, and V. A. Thomas. "Estimating Leaf Area Index in Intensively Managed Pine Plantations Using Airborne Laser Scanner Data." Forest Ecology and Management 270:54-65, 2012. doi:10.1016/j.foreco.2011.12.048
Pereira, L. M. G., and L. L. F. Janssen. "Suitability of Laser Data for DTM Generation: A Case Study in the Context of Road Planning and Design." Isprs Journal of Photogrammetry and Remote Sensing 54 (4):244-253, 1999. doi:10.1016/S0924-2716(99)00018-0
Pingel, T. J., K. C. Clarke, and W. A. McBride. "An Improved Simple Morphological Filter for the Terrain Classification of Airborne LiDAR Data." ISPRS Journal of Photogrammetry and Remote Sensing 77:21-30, 2013. doi:10.1016/j.isprsjprs.2012.12.002
Pirti, A. "Accuracy Analysis of GPS Positioning near the Forest Environment." Croatian Journal of Forest Engineering 29 (2):189-199, 2008.
Pope, G., and P. Treitz. "Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and Worldview-2 Imagery." Remote Sensing 5 (10):5040-5063, 2013. doi:10.3390/rs5105040
Popescu, S. C., and R. H. Wynne. "Seeing the Trees in the Forest: Using LiDAR and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height." Photogrammetric Engineering and Remote Sensing 70 (5):589-604, 2004. doi:10.1016/S0168-1699(02)00121-7
Popescu, S. C., R. H. Wynne, and R. F. Nelson. "Estimating Plot-level Tree Heights with LiDAR: Local Filtering with a Canopy-height Based Variable Window Size." Computers and Electronics in Agriculture 37 (1-3):71-95, 2002. doi:10.1016/S0168-1699(02)00121-7
Racine, E. B., N. C. Coops, B. St-Onge, and J. Begin. "Estimating Forest Stand Age from LiDAR-derived Predictors and Nearest Neighbor Imputation." Forest Science 60 (1):128-136, 2014. doi:10.5849/forsci.12-088
Reitberger, J., C. Schnorr, P. Krzystek, and U. Stilla. "3d Segmentation of Single Trees Exploiting Full Waveform LiDAR Data." Isprs Journal of Photogrammetry and Remote Sensing 64 (6):561-574, 2009. doi:10.1016/j.isprsjprs.2009.04.002
Reutebuch, S. E., R. J. McGaughey, H. E. Andersen, and W. W. Carson. "Accuracy of a High-resolution LiDAR Terrain Model under a Conifer Forest Canopy." Canadian Journal of Remote Sensing 29 (5):527-535, 2003. doi:10.5589/m03-022
Riano, D., F. Valladares, S. Condes, and E. Chuvieco. "Estimation of Leaf Area Index and Covered Ground from Airborne Laser Scanner (LiDAR) in Two Contrasting Forests." Agricultural and Forest Meteorology 124 (3-4):269-275, 2004. doi:10.1016/j.agrformet.2004.02.005
Richardson, A. J., and C. L. Wiegand. "Distinguishing Vegetation from Soil Background Information." Photogrammetric Engineering and Remote Sensing 43 (12):1541-1552, 1977.
Richter, R., and D Schläpfer. Atmospheric/Topographic Correction for Satellite Imagery, ATCOR-2/3 User Guide Vers. 8.0.2: Wessling: DLR-German Aerospace Center, Remote Sensing Data Center. 2011.
Rieger, P. "Range Ambiguity Resolution Technique Applying Pulse-position Modulation in Time-of-flight Scanning LiDAR Applications." Optical Engineering 53 (6), 2014. doi:10.1117/1.OE.53.6.061614
Rouse Jr, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation: Greenbelt, MD, NASA/GSFC,type III, final report, 371p. 1973.
Sackov, I., and M. Kardos. "Forest Delineation Based on LiDAR Data and Vertical Accuracy of the Terrain Model in Forest and Non-forest Area." Annals of Forest Research 57 (1):119-136, 2014. doi:10.15287/afr.2014.169
Salleh, M. R. M., Z. Ismail, and M. Z. A. Rahman. "Accuracy Assessment of LiDAR-derived Digital Terrain Model (DTM) with Different Slope and Canopy Cover in Tropical Forest Region." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (2):183, 2015. doi:10.5194/isprsannals-II-2-W2-183-2015
Shan, J., and C. K. Toth. Topographic Laser Ranging and Scanning : Principles and Processing. Boca Raton: CRC Press/Taylor & Francis Group. 2008. doi:10.1201/9781420051438.ch1
Singh, K. K., G. Chen, J. B. McCarter, and R. K. Meentemeyer. "Effects of LiDAR Point Density and Landscape Context on Estimates of Urban Forest Biomass." ISPRS Journal of Photogrammetry and Remote Sensing 101:310-322, 2015. doi:10.1016/j.isprsjprs.2014.12.021
Soininen, A. Terrascan User’s Guide: Helsinki, Finland: Terrasolid. 2000.
Solberg, S. "Mapping Gap Fraction, LAI and Defoliation Using Various ALS Penetration Variables." International Journal of Remote Sensing 31 (5):1227-1244, 2010. doi:10.1080/01431160903380672
Sousa, V. B., J. L. Louzada, and H. Pereira. "Variation of Ring Width and Wood Density in Two Unmanaged Stands of the Mediterranean Oak Quercus Faginea." Forests 9 (1):44, 2018. doi:10.3390/f9010044
Sterenczak, K., M. Ciesielski, R. Balazy, and T. Zawila-Niedzwiecki. "Comparison of Various Algorithms for DTM Interpolation from LiDAR Data in Dense Mountain Forests." European Journal of Remote Sensing 49:599-621, 2016. doi:/10.5721/EuJRS20164932
Su, J. S., Y. Q. Wang, X. Y. Yang, and X. F. Wang. "Enhancement of Weak LiDAR Signal Based on Variable Frequency Resolution EMD." IEEE Photonics Technology Letters 28 (24):2882-2885, 2016. doi:10.1109/LPT.2016.2623841
Su, J., and E. Bork. "Influence of Vegetation, Slope, and LiDAR Sampling Angle on DEM Accuracy." Photogrammetric Engineering and Remote Sensing 72 (11):1265-1274, 2006. doi:10.14358/PERS.72.11.1265
Takahashi, T., K. Yamamoto, Y. Miyachi, Y. Senda, and M. Tsuzuku. "The Penetration Rate of Laser Pulses Transmitted from a Small-footprint Airborne LiDAR: A Case Study in Closed Canopy, Middle-aged Pure Sugi (Cryptomeria Japonica D. Don) and Hinoki Cypress (Chamaecyparis Obtusa Sieb. Et Zucc.) Stands in Japan." Journal of Forest Research 11 (2):117-123, 2006. doi:10.1007/s10310-005-0189-0
Tang, Hao, A. Swatantran, T. Barrett, P. DeCola, and R. Dubayah. "Voxel-Based Spatial Filtering Method for Canopy Height Retrieval from Airborne Single-Photon Lidar." Remote Sensing 8 (9):771, 2016. doi:10.3390/rs8090771
Tinkham, W. T., A. M. S. Smith, C. Hoffman, A. T. Hudak, M. J. Falkowski, M. E. Swanson, and P. E. Gessler. "Investigating the Influence of LiDAR Ground Surface Errors on the Utility of Derived Forest Inventories." Canadian Journal of Forest Research 42 (3):413-422, 2012. doi:10.1139/x11-193
Trimble. 5700/5800 GPS Receiver User Guide,Version 2.00, Revision A. Datton, Ohio, USA.: Trimble Incorporation. 2003.
Tsai, K. J., and C. F. Chen. "Applications of Remote Sensing on Evaluating Vegetation Index of Landslides Induced by Chi-Chi Earthquake in Central Taiwan." Journal of Photogrammetry and Remote Sensing 10 (2):203-212, 2005. doi:10.6574/jprs.2005.10(2).7 (in Chinese)
Uhl, E., P. Biber, M. Ulbricht, M. Heym, T. Horváth, F. Lakatos, J. Gál, et al. "Analysing the Effect of Stand Density and Site Conditions on Structure and Growth of Oak Species Using Nelder Trials Along an Environmental Gradient: Experimental Design, Evaluation Methods, and Results." Forest Ecosystems 2 (1):17, 2015. doi:10.1186/s40663-015-0041-8
Ulvcrona, K. A., S. Claesson, K. Sahlen, and T. Lundmark. "The Effects of Timing of Pre-commercial Thinning and Stand Density on Stem Form and Branch Characteristics of Pinus Sylvestris." Forestry 80 (3):323-335, 2007. doi:10.1093/forestry/cpm011
Van Leeuwen, M., N. C. Coops, and M. A. Wulder. "Canopy Surface Reconstruction from a LiDAR Point Cloud Using Hough Transform." Remote Sensing Letters 1 (3):125-132, 2010. doi:10.1080/01431161003649339
Vega, C., A. Hamrouni, S. El Mokhtari, J. Morel, J. Bock, J. P. Renaud, M. Bouvier, and S. Durrieu. "Ptrees: A Point-based Approach to Forest Tree Extraction from LiDAR Data." International Journal of Applied Earth Observation and Geoinformation 33:98-108, 2014. doi:10.1016/j.jag.2014.05.001
Wagner, W. "Radiometric Calibration of Small-footprint Full-waveform Airborne Laser Scanner Measurements: Basic Physical Concepts." ISPRS Journal of Photogrammetry and Remote Sensing 65 (6):505-513, 2010. doi:10.1016/j.isprsjprs.2010.06.007
Wang, C. K., Y. H. Tseng, and C. K. Wang. "A Wavelet-based Echo Detector for Waveform LiDAR Data." IEEE Transactions on Geoscience and Remote Sensing 54 (2):757-769, 2016. doi:10.1109/TGRS.2015.2465148
Wang, C. K., Y. H. Tseng, and H. J. Chu. "Airborne Dual-wavelength LiDAR Data for Classifying Land Cover." Remote Sensing 6 (1):700-715, 2014. doi:10.3390/rs6010700
Wang, C., and J. Qi. "Biophysical Estimation in Tropical Forests Using JERS-1 SAR and VNIR Imagery. II. Aboveground Woody Biomass." International Journal of Remote Sensing 29 (23):6827-6849, 2008. doi:10.1080/01431160802270123
Wang, Q., S. Adiku, J. Tenhunen, and A. Granier. "On the Relationship of NDVI with Leaf Area Index in a Deciduous Forest Site." Remote Sensing of Environment 94 (2):244-255, 2005. doi:10.1016/j.rse.2004.10.006
Wasser, L., R. Day, L. Chasmer, and A. Taylor. "Influence of Vegetation Structure on LiDAR-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-off and Leaf-on Conditions." Plos One 8 (1):e54776, 2013. doi:10.1371/journal.pone.0054776
Wästlund, A., J. Holmgren, E. Lindberg, and H. Olsson. "Forest Variable Estimation Using a High Altitude Single Photon Lidar System." Remote Sensing 10 (9):1422, 2018. doi:10.3390/rs10091422
Wu, S. T., Y. T. Hsieh, C. T. Chen, and C. J. Chen. "A Comparison of 4 Shadow Compensation Techniques for Land Cover Classification of Shaded Areas from High Radiometric Resolution Aerial Images." Canadian Journal of Remote Sensing 40 (4):315-326, 2014. doi:10.1080/07038992.2014.979488
Wu, Y. C., and A. H. Strahler. "Remote Estimation of Crown Size, Stand Density, and Biomass on the Oregon Transect." Ecological Applications 4 (2):299-312, 1994. doi:10.2307/1941935
Wulder, M. A., J. C. White, R. F. Nelson, E. Naesset, H. O. Orka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken. " LiDAR Sampling for Large-area Forest Characterization: A Review." Remote Sensing of Environment 121:196-209, 2012. doi:10.1016/j.rse.2012.02.001
Wulder, M., K. O. Niemann, and D. G. Goodenough. "Local Maximum Filtering for the Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery." Remote Sensing of Environment 73 (1):103-114, 2000. doi:10.1016/S0034-4257(00)00101-2
Zeide, B. "How to Measure Stand Density." Trees-Structure and Function 19 (1):1-14, 2005. doi:10.1007/s00468-004-0343-x
Zhao, C., J. Jensen, X. Deng, and N. Dede-Bamfo. "Impacts of LiDAR Sampling Methods and Point Spacing Density on DEM Generation." Papers in Applied Geography 2 (3):261-270, 2016. doi:10.1080/23754931.2015.1121405
Zhao, K. G., and S. Popescu. "LiDAR-based Mapping of Leaf Area Index and Its Use for Validating Globcarbon Satellite LAI Product in a Temperate Forest of the Southern USA." Remote Sensing of Environment 113 (8):1628-1645, 2009. doi:10.1016/j.rse.2009.03.006
Zhao, K. G., S. Popescu, and R. Nelson. "LiDAR Remote Sensing of Forest Biomass: A Scale-invariant Estimation Approach Using Airborne Lasers." Remote Sensing of Environment 113 (1):182-196, 2009. doi:10.1016/j.rse.2008.09.009
Zhou, Z. R., D. X. Hua, Y. F. Wang, Q. Yan, S. C. Li, Y. Li, and H. W. Wang. "Improvement of the Signal to Noise Ratio of LiDAR Echo Signal Based on Wavelet De-noising Technique." Optics and Lasers in Engineering 51 (8):961-966, 2013. doi:10.1016/j.optlaseng.2013.02.011
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-10-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-10-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw