進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1210201114473200
論文名稱(中文) 全光控聚焦強度之液晶高分子微透鏡陣列之研究及其應用
論文名稱(英文) Studies of All-optical Controlling of the Focal Intensity of a Liquid Crystalline Polymer Microlens Array and Their Applications
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 1
出版年 100
研究生(中文) 黃三宜
研究生(英文) San-Yi Huang
學號 L7895107
學位類別 博士
語文別 英文
論文頁數 91頁
口試委員 指導教授-傅永貴
召集委員-蔡錦俊
口試委員-李佳榮
口試委員-魏台輝
口試委員-黃啟炎
口試委員-羅光耀
中文關鍵字 液晶  微透鏡陣列  偶氮染料  液晶高分子  光開關 
英文關鍵字 liquid crystal  microlens array  azo dye  liquid crystalline polymer  optical switching 
學科別分類
中文摘要 對於達成光驅動元件的條件而言,其中光感材料例如偶氮染料以及其衍生物在驅動過程中扮演著重要的角色,而這類的光感材料主要有著優異的控制光的傳播方向的特性,近幾年來,雖然大部分皆利用外加電場的型式來驅動元件,但有些研究方法則嘗試在微光學系統裡利用雷射光束來達成一個全光調控的光學元件,例如光驅動微透鏡元件,此外多數的全光調控或全光驅動液晶元件都可以利用偶氮染料的特性來達成,例如在光子晶體中的多穩態結構、光驅動顯示器、向列型液晶和膽固醇液晶光柵的調控。本文中主要研究工作是在微光學元件裡利用雷射光束來達成全光調控的液晶光學元件,內容則是在液晶高分子微透鏡元件裡利用偶氮染料的光同素異構化以及光配向的機制來驅動。
主要研究分成兩個部份,第一個部份所探討的是在摻雜了偶氮染料的液晶高分子微透鏡中其光線聚焦的強度可成功地利用入射光的偏振來加以控制,而所製作的液晶高分子微透鏡元件裡包含了由液晶高分子所以組成的聚焦單元以及由可光配向之液晶層所以組成的調控單元,此兩個單元的功能主要是藉由調控入射光的偏振來控制聚焦強度,由於此元件裡具有光變異折射率之液晶高分子微透鏡,因此藉由入射光偏振方向的不同便可使元件聚有匯聚以及發散的現象,而聚焦強度的灰階更可微調入射光偏振的角度來達成,此外元件更具有記憶以及可重複寫入的效果,另外反應時間大約為120秒。
第二部份的研究主要也是改變入射光的偏振方向來達成液晶高分子微透鏡聚焦強度的調控,此部分不同的是利用偶氮材料的光同素異構化機制來達成光調控元件,其中操作機制也包含了利用雙光子效應來調控液晶元件的相態從扭轉型向列型液晶轉換成各方均向性液晶態,而反向地轉變回扭轉型向列型液晶可用氬離子雷射來加速回復,在經過50次以上來回的光切換過程中,其操作性能依然保持不變,同時也具有類似記憶的效果,另外利用此操作機制其聚焦以及發散的切換時間可改善至20秒。
英文摘要 Light responsive materials, such as azo dyes and its azo derivatives, are promising candidates for the realization of optically addressed devices. They have the capability to control light propagation through the optical driving method. In recent years, many attempts have been made to achieve an all-optically switching and/or tuning method using laser beam in micro-optical systems, such as optical switching microlenses. Using the properties of azo dye materials, several all-optical controlling, tuning, or switching devices based on liquid crystal (LC) have been proposed, including multi-stability in photonic structures, LC gratings, cholesteric LC (CLC) beam steering, and dye-doped CLC. The present thesis aims to examine the related all-optically controlling method using laser beam in micro-optical systems. Photo-isomerization and photo-alignment effects in dye-doped liquid crystal (DDLC) films with liquid crystalline polymer microlens array (LCP MLA) structure are investigated.
The current study mainly consists of two parts. In the first part, we demonstrate that LCP MLA with a focal intensity can be tuned by controlling the polarization of incident light based on a DDLC film. The proposed LCP MLA has a focusing unit based on a birefringent liquid crystalline polymer (LCP) and a tuning unit with a photo-alignment layer for controlling the polarization state of incident laser light. The optically variable refractive indices of LCP allow a positive or negative MLA to be realized by controlling the polarization of the incident light. The intensity can be tuned using a low optical pumping beam intensity, and it remains stable after pump beam is switched off. The measured switching time between focusing and defocusing in the proposed device is ~120 s, and the process is reversible.
The second part demonstrates an all-optically tunable and multi-stable LCP MLA device based on the polarization control of the incident probe light. The focal intensity is switched by the biphotonic effect, which involves pumping two laser beams, to control the phase state of the DDLC film from the twist nematic (TN) to the isotropic state. The operational mechanism of optical tuning is associated with the photo-isomerization effect. The relaxation of the device from the isotropic to the TN structure can be significantly hastened with the application of Ar+ laser after turning off the UV light. The device exhibits no significant aging effect and memory-like effect. The focal intensity remains almost unchanged after 50 cycles of switching. The switching time between focusing and defocusing in the proposed device is ~20 s.
論文目次 摘要...........................................................................................................................Ⅰ
Abstract.............................................................................................................................Ⅱ
Acknowledgements..........................................................................................................Ⅳ
Table of contents...............................................................................................................Ⅴ
List of figures....................................................................................................................Ⅷ
List of Tables.................................................................................................................ⅩⅡ

Chapter 1 Introduction......................................................................................................1
1.1 Foreword.......................................................................................................................1
1.2 Overview of the Dissertation.......................................................................................2

Chapter 2 Backgrounds.....................................................................................................4
2.1 What Are Liquid Crystals? ........................................................................................4
2.2 Categories of Liquid Crystal.......................................................................................5
2.2.1 Lyotropic Liquid Crystals....................................................................................5
2.2.2 Polymeric Liquid Crystals...................................................................................6
2.2.3 Thermotropic Liquid Crystals.............................................................................7
(A) Nematic LCs.........................................................................................................8
(B) Smectic LCs..........................................................................................................9
(B.1) Smectic-A Phase..........................................................................................9
(B.2) Smectic-A* Phase......................................................................................10
(B.3) Smectic-C Phase........................................................................................11
(B.4) Smectic-C* Phase (or Ferroelectric) .......................................................11
(C) Cholesteric Phase...............................................................................................12
(C.1) Textures of Cholesteric Liquid Crystals.................................................14
(C.2) Blue Phase.................................................................................................15
2.3 Liquid Crystalline Polymer.......................................................................................16
2.4 Azo Dye Materials and Their Related Theories......................................................16
§ 2.4.1 Photo-Isomerization Effect of Non-Adsorption Azo Dyes..........................17
2.4.2 Photoalignment Effect of Adsorption-Type Azo Dyes Doped in Liquid Crystals..............................................................................................................21

Chapter 3 Related Theories of Liquid Crystals............................................................24
3.1 Physics of Liquid Crystal..........................................................................................24
3.1.1 Dielectric Anisotropy of Liquid Crystals........................................................24
3.1.2 Birefringence of Liquid Crystals.....................................................................25
3.1.3 Phase Retardation Induced Polarization Change..........................................28
3.2 Positive and Negative Torques in Dye-Doped Liquid Crystals (DDLCs).............29
3.2.1 Positive Torque Effect: Jànossy Model...........................................................29
3.2.2 Negative Torque Effect: Gibbons Model.........................................................31
3.3 Photoisomerization-Induced Order–Disorder Change in the Alignment of LCs....................................................................................................................................32
3.4 Twisted Nematic Liquid Crystal Displays (TN-LCD) ...........................................34
3.4.1 Optical Properties of a Twisted Nematic Liquid Crystal..............................36
3.5 Liquid Crystal Lens...................................................................................................39
3.6 Finite-Difference Time-Domain (FDTD) Method...................................................40

Chapter 4 Experimental Preparations...........................................................................43
4.1 Materials Employed in Experiments........................................................................43
4.1.1 Nematic Liquid Crystal-E7...........................................................................43
4.1.2 Liquid Crystalline Polymer (LCP)-RMS01-001c........................................44
4.1.3 Azo dye (Methyl Red, MR) ..............................................................................47
4.1.4 Azo dye (AzoC5) ...............................................................................................48
4.1.5 Polymer-Norland Optical Adhesive 81 (NOA 81) ......................................50
4.2 Fabrication of a DDLC Cell with Liquid Crystal Polymer Microlens Array (LCP MLA) Structure...............................................................................................................51
4.2.1 DDLC Cell with LCP MLA Structure............................................................51
4.2.2 DD-TNLC Cell with LCP MLA Structure......................................................54

Chapter 5 Polarization-Dependent Optical Tuning of the Focal intensity of a Liquid Crystal Polymer Microlens array...................................................................................58
5.1 Introduction................................................................................................................58
5.2 Experimental Method................................................................................................58
5.3 Experimental Results and Discussions.....................................................................59
5.3.1 LCP MLA Structure and Their Focal Properties............................................59
5.3.2 Simulation of the Focal Properties....................................................................62
5.3.3 Polarization-Dependent Optical Tuning of the LCP MLA Device.................63

Chapter 6 All-Optical Controlling of the Focal Intensity of a Liquid Crystal Polymer Microlens Array...............................................................................................................66
6.1 Introduction................................................................................................................66
6.2 Experimental Method................................................................................................66
6.3 Experimental Results and Discussions.....................................................................67
6.3.1 LCP MLA structure and Their Focal Properties.............................................67
6.3.2 Theoretical Calculation of the Focal Intensity.................................................70
6.3.3 All-Optical Controlling of the Focal Intensity of the LCP MLA Device........71
6.3.4 Applications of Microlens Arrays......................................................................73

Chapter 7 Conclusions and Future Studies...................................................................76
7.1 Conclusions.................................................................................................................76
7.2 Future Studies............................................................................................................77

References........................................................................................................................81
List of Publications..........................................................................................................89
參考文獻 1. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The Manufacture of Microlenses by Melting Photoresist," Meas. Sci. Technol. 1, 759-766 (1990).
2. F. Sobel, L. Wentworth, and J. C. Wiltse, "Quasi-optical surface waveguide and other components for the 100-to- 300-Ge region," IRE Trans. Microw. Tech. 9, 512-518 (1961).
3. N. Kitaura, S. Ogata, and Y. Mori, "Spectrometer Employing a Micro-Fresnel Lens," Opt. Eng. 34, 584-588 (1995).
4. M. Ferstl, and A. M. Frisch, "Static and dynamic Fresnel zone lenses for optical interconnections," J. Mod. Optic. 43, 1451-1462 (1996).
5. M. Hain, W. von Spiegel, M. Schmiedchen, T. Tschudi, and B. Javidi, "3D integral imaging using diffractive Fresnel lens arrays," Opt. Express 13, 315-326 (2005).
6. L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, "Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal," Opt. Express 15, 2900-2906 (2007).
7. Y. H. Fan, H. W. Ren, and S. T. Wu, "Switchable Fresnel lens using polymer-stabilized liquid crystals," Opt. Express 11, 3080-3086 (2003).
8. H. W. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003).
9. T. H. Lin, Y. H. Huang, A. Y. G. Fuh, and S. T. Wu, "Polarization controllable Fresnel lens using dye-doped liquid crystals," Opt. Express 14, 2359-2364 (2006).
10. M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, "Optical limiters based on liquid-crystal microlenses," Opt. Spectroscope 92, 614-618 (2002).
11. H. Ren, and S. T. Wu, "Tunable-focus liquid microlens array using dielectrophoretic effect," Opt. Express 16, 2646-2652 (2008).
12. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, "Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates," Opt. Express 16, 8084-8093 (2008).
13. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Opt. Express 12, 2494-2500 (2004).
14. Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, "A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer," Appl. Phys. Lett. 91, 221113 (2007).
15. Y. M. Lee, K. H. Lee, Y. Choi, and J. H. Kim, "Fast Bistable Microlens Arrays Based on a Birefringent Layer and Ferroelectric Liquid Crystals," Jpn. J. Appl. Phys. 47, 6343-6346 (2008).
16. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, "All-optical switching and multistability in photonic structures with liquid crystal defects," Appl. Phys. Lett. 92, 253306 (2008).
17. D. E. Lucchetta, F. Vita, and F. Simoni, "All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals," Appl. Phys. Lett. 97, 231112 (2010).
18. U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, "Optical switching of liquid-crystal polarization gratings with nanosecond pulses," Opt. Lett. 34, 2554-2556 (2009).
19. L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, "All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds," Appl. Phys. Lett. 93, 181115 (2008).
20. H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. G. Fuh, "Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal," Opt. Express 18, 17498-17503 (2010).
21. S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, "Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications," Opt. Commun. 283, 1726-1731 (2010).
22. F. Reinitzer, Monatschr. Chem., 9, 421 (1898).
23. P.-G. d. Gennes, and J. Prost, The physics of liquid crystals (Clarendon Press ; Oxford University Press, Oxford New York, 1993).
24. I.-C. Khoo, and Society of Photo-optical Instrumentation Engineers., Liquid crystals VIII : 2-3 August, 2004, Denver, Colorado, USA (SPIE, Bellingham, Wash., 2004).
25. I.-C. Khoo, and F. Simoni, Physics of liquid crystalline materials : based on lectures delivered at the Summer School on the Physics of Liquid Crystals, Bra, Italy, 4-14 October 1988 (Gordon and Breach Science Publishers, New York, 1991).
26. I.-C. Khoo, Liquid crystals (Wiley-Interscience, Hoboken, N.J., 2007).
27. S. Chandrasekhar, Liquid crystals (Cambridge University Press, Cambridge England ; New York, NY, USA, 1992).
28. S. Elston, and R. Sambles, The optics of thermotropic liquid crystals (Taylor & Francis, London, 1998).
29. G. W. Gray, and J. W. G. Goodby, Smectic liquid crystals : textures and structures (L. Hill ; Distributed by Heyden, Glasgow Philadelphia, 1984).
30. I.-C. Khoo, and S.-T. Wu, Optics and nonlinear optics of liquid crystals (World Scientific, Singapore ; River Edge, NJ, 1993).
31. F. Giesselmann, P. Zugenmaier, I. Dierking, S. T. Lagerwall, B. Stebler, M. Kaspar, V. Hamplova, and M. Glogarova, "Smectic-A*-smectic-C* transition in a ferroelectric liquid crystal without smectic layer shrinkage," Phys. Rev. E. 60, 598-602 (1999).
32. J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak, and J. S. Patel, "A New Molecular Ordering in Helical Liquid-Crystals," J. Am. Chem. Soc. 111, 8119-8125 (1989).
33. J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak, and J. S. Patel, "Characterization of a New Helical Smectic Liquid-Crystal," Nature 337, 449-452 (1989).
34. J. W. Goodby, "Chirality in Liquid-Crystals," J. Mater. Chem. 1, 307-318 (1991).
35. A. J. Slaney, and J. W. Goodby, "The Effect of Molecular Chirality on the Incidence of Twisted Smectic-a Phases," Liq. Cryst. 9, 849-861 (1991).
36. I. Dierking, and S. T. Lagerwall, "A review of textures of the TGBA* phase under different anchoring geometries," Liq. Cryst. 26, 83-95 (1999).
37. V. G. Chigrinov, Liquid crystal devices : physics and applications (Artech House, Boston ; London, 1999).
38. J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, "Formation of phase grating in planar aligned cholesteric liquid crystal film," Jpn. J. Appl. Phys. 2 41, L1318-L1320 (2002).
39. M. S. Giridhar, K. A. Suresh, and G. S. Ranganath, "Optical diffraction in nonuniform cholesteric liquid crystals: phase-grating mode," J. Opt. Soc. Am. A 19, 19-23 (2002).
40. D. K. Y. S. T. Wu, "Reflective Liquid Crystal Display," (Wiley, New York, 2001).
41. H. Hervet, J. P. Hurault, and F. Rondelez, "Static One-Dimensional Distortions in Cholesteric Liquid-Crystals," Phys. Rev. A 8, 3055-3064 (1973).
42. H. J. Coles, and M. N. Pivnenko, "Liquid crystal 'blue phases' with a wide temperature range," Nature 436, 997-1000 (2005).
43. P. R. Gerber, "Electro-Optical Effects of a Small-Pitch Blue-Phase System," Mol. Cryst. Liq. Cryst. 116, 197-206 (1985).
44. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, "Polymer-stabilized liquid crystal blue phases," Nat. Mater. 1, 64-68 (2002).
45. S. Y. Lu, and L. C. Chien, "Electrically switched color with polymer-stabilized blue-phase liquid crystals," Opt. Lett. 35, 562-564 (2010).
46. H. Kikuchi, Y. Hisakado, K. Uchida, M. Yokota, and T. Kajiyama, "Stabilization of cholesteric blue phase with polymer.," Abstr. Pap. Am. Chem. S 226, U467-U467 (2003).
47. H. Finkelmann, M. Portugall, and H. Ringsdorf, "Influence of Substituents on to Liquid-Crystalline Polymer Phases," Abstr. Pap. Am. Chem. S 176, 50-50 (1978).
48. H. Finkelmann, H. Ringsdorf, and J. H. Wendorff, "Model Considerations and Examples of Enantiotropic Liquid-Crystalline Polymers - Polyreactions in Ordered Systems .14.," Makromol. Chem. 179, 273-276 (1978).
49. H. Finkelmann, M. Happ, P. Portugall, H. Ringsdorf, W. Siol, and J. H. Wendorff, "Synthesis and Structure of Liquid-Crystalline Polymers," Chem. Ztg. 102, 226-226 (1978).
50. A. V. Ivashchenko, Dichroic dyes for liquid crystal displays (CRC, Boca Raton ; London, 1994).
51. A. Y. G. Fuh, S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, and P. C. Yang, "Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications," Opt. Commun. 283, 1726-1731 (2010).
52. F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, "Dye-doped liquid crystals as high-resolution recording media," Opt. Lett. 22, 549-551 (1997).
53. A. Y. G. Fuh, C. C. Liao, C. Y. Tsai, C. L. Lu, and D. M. Hsieh, "Fast optical recording in dye-doped polymer-dispersed liquid-crystal films," Opt. Lett. 26, 447-449 (2001).
54. A. Y. G. Fuh, C. C. Liao, K. C. Hsu, and C. L. Lu, "Laser-induced reorientation effect and ripple structure in dye-doped liquid-crystal films," Opt. Lett. 28, 1179-1181 (2003).
55. M. J. Sansone, G. Khanarian, T. M. Leslie, M. Stiller, J. Altman, and P. Elizondo, "Large Kerr Effects in Transparent Encapsulated Liquid-Crystals," J. Appl. Phys. 67, 4253-4259 (1990).
56. F. Simoni, G. Cipparrone, D. Duca, and I. C. Khoo, "Threshold Degenerate Wave Mixing in Dye-Doped Polymer-Dispersed Liquid-Crystals," Opt. Lett. 16, 360-362 (1991).
57. F. Simoni, G. Cipparrone, C. Umeton, G. Arabia, and G. Chidichimo, "Optical Nonlinearities Induced by Thermal Effects in Polymer Dispersed Liquid-Crystals," Appl. Phys. Lett. 54, 896-897 (1989).
58. A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, "Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye," Appl. Phys. Lett. 74, 2572-2574 (1999).
59. S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, "Optically switchable twist nematic grating based on a dye-doped liquid crystal film," Appl. Phys. Lett. 88, 041104 (2006).
60. J. R. Wang, C. R. Lee, M. R. Lee, and A. Y. G. Fuh, "Photorefractive effect induced by polarization gratings in dye-doped liquid crystals," Opt. Lett. 29, 110-112 (2004).
61. A. Y. G. Fuh, J. C. Chen, S. Y. Huang, and K. T. Cheng, "Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application," Appl. Phys. Lett. 96, 051103 (2010).
62. J. H. Liu, and H. Y. Wang, "Optical switching behavior of polymer-dispersed liquid crystal composite films with various novel azobenzene derivatives," J. Appl. Polym. Sci. 91, 789-799 (2004).
63. T. Ikeda, H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, and T. Shiono, "Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore," J. Phys. Chem. B 104, 7023-7028 (2000).
64. D. Gabor,"A new microscopic principle," Nature 161, 777 (1948).
65. Y. Nakanishi, M. Yoshizawa, T. Yamaguchi, H. Hazama, Y. Nemoto, T. Goto, T. D. Matsuda, H. Sugawara, and H. Sato, "Unconventional emergence of elastic softening induced by magnetic fields in the unusual heavy-fermion compound PrFe4R12," J. Phys-Condens Mat. 14, L715-L720 (2002).
66. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, "Surface-Mediated Alignment of Nematic Liquid-Crystals with Polarized Laser-Light," Nature 351, 49-50 (1991).
67. M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multidomain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).
68. R. Yamaguchi, Y. Goto, and S. Sato, "Liquid crystal alignment surface with two easy axes induced by unidirectional rubbing," Appl. Phys. Lett. 82, 4450-4452 (2003).
69. E. Eren, "Adsorption Performance and Mechanism in Binding of Azo Dye by Raw Bentonite," Clean-Soil. Air Water 38, 758-763 (2010).
70. P. Y. a. C. Gu, Optics of liquid crystal displays (Wiley, New York, 1999).
71. I. Janossy, "Molecular Interpretation of the Absorption-Induced Optical Reorientation of Nematic Liquid-Crystals," Phys. Rev. E 49, 2957-2963 (1994).
72. I. Janossy, and T. Kosa, "Influence of Anthraquinone Dyes on Optical Reorientation of Nematic Liquid-Crystals," Opt. Lett. 17, 1183-1185 (1992).
73. I. Janossy, L. Csillag, and A. D. Lloyd, "Temperature-Dependence of the Optical Freedericksz Transition in Dyed Nematic Liquid-Crystals," Phys. Rev. A 44, 8410-8413 (1991).
74. I. Janossy, A. D. Lloyd, and B. S. Wherrett, "Anomalous Optical Freedericksz Transition in an Absorbing Liquid-Crystal," Mol. Cryst. Liq. Cryst. 179, 1-12 (1990).
75. T. Ikeda, and O. Tsutsumi, "Photochemical modulation of alignment of liquid crystals and photonic applications," Curr. Opin. Solid St. M 6, 563-568 (2002).
76. P. Yeh, and C. Gu, Optics of liquid crystal displays (Wiley, New York, 1999).
77. B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics (Wiley, New York, 1991).
78. C. H. Gooch, and H. A. Tarry, "Optical-Properties of Twisted Nematic Liquid-Crystal Structures with Twist Angles Less Than 90 Degrees," J. Phys. D. Appl. Phys. 8, 1575-1584 (1975).
79. K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media," Ieee T. Antenn. Propag. 14, 302 (1966).
80. T. Matsui, and M. Kitaguchi, "Finite-Difference Time-Domain Analysis of Laser Action in Cholesteric Photonic Liquid Crystal," Appl. Phys. Express 3, 061701 (2010).
81. C. L. Ting, T. H. Lin, C. C. Liao, and A. Y. G. Fuh, "Optical simulation of cholesteric liquid crystal displays using the finite-difference time-domain method," Opt. Express 14, 5594-5606 (2006).
82. X. H. Wang, B. Wang, P. J. Bos, J. E. Anderson, J. J. Pouch, and F. A. Miranda, "Finite-difference time-domain simulation of a liquid-crystal optical phased array," J. Opt. Soc. Am. A 22, 346-354 (2005).
83. E. E. Kriezis, and S. J. Elston, "Finite-difference time domain method for light wave propagation within liquid crystal devices," Opt. Commun. 165, 99-105 (1999).
84. E. E. Kriezis, and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method," Opt. Commun. 177, 69-77 (2000).
85. T. Sasaki, M. Yamahara, M. Nakamura, and N. Koide, "Relationship between the optical properties of immobilized liquid-crystalline film and polyimide alignment layer," Mol. Cryst. Liq. Cryst. 473, 3-14 (2007).
86. H. Yang, W. B. Li, Z. H. Cheng, G. H. Pan, H. J. Liu, H. Cao, and Z. Yang, "Effects of the mixture composition on the microstructure of polymer matrix and light scattering properties of liquid crystal/photo-polymerizable monomers composites," Opt. Mater. 31, 434-439 (2008).
87. S. A. Bulgakova, A. I. Mashin, I. A. Kazantseva, D. E. Kashtanov, M. M. Jones, G. S. Tsepkov, A. V. Korobkov, and A. V. Nezhdanov, "Influence of the composition of the polymer matrix on the electrooptical properties of films with a dispersed liquid crystal," Russ. J. Appl. Chem. 81, 1446-1451 (2008).
88. H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, "Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets," Opt. Commun. 247, 101-106 (2005).
89. Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, "Liquid Crystal Microlens Arrays With Switchable Positive and Negative Focal Lengths," J. Disp. Technol. 1, 151-156 (2005).
90. S. Masuda, T. Nose, and S. Sato, "Optical properties of a polymer-stabilized liquid crystal microlens," Jpn. J. Appl. Phys. part 2-Lett. 37, L1251-L1253 (1998).
91. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, "Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy," Opt. Express 17, 2487-2499 (2009).
92. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable microlens arrays using polymer network liquid crystal," Opt. Commun. 230, 267-271 (2004).
93. H. W. Ren, Y. H. Lin, and S. T. Wu, "Flat polymeric microlens array," Opt. Commun. 261, 296-299 (2006).
94. V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, and A. Tork, "Polymer-stabilized liquid crystal for tunable microlens applications," Opt. Express 10, 865-870 (2002).
95. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. part 2-Lett. 41, L1232-L1233 (2002).
96. T. H. Lin, H. C. Jau, S. Y. Hung, H. R. Fuh, and A. Y. G. Fuh, "Photoaddressable bistable reflective liquid crystal display," Appl. Phys. Lett. 89, 021116 (2006).
97. A. Y. G. Fuh, C. C. Liao, K. C. Hsu, C. L. Lu, and C. Y. Tsai, "Dynamic studies of holographic gratings in dye-doped liquid-crystal films," Opt. Lett. 26, 1767-1769 (2001).
98. C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, and A. Y. G. Fuh, "Surface-assisted photoalignment in dye-doped liquid-crystal films," Phys. Rev. E 69, 031704 (2004).
99. S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, "Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array," Appl. Phys. B-Lasers and Opt. 104, 93-97 (2011).
100. J. H. Julien Flack, Graham J. Woodgate, "A Prototype 3D Mobile Phone Equipped with a Next Generation Autostereoscopic Display," Proceedings SPIE 6490A-21 (2007).
101. L. Li, and A. Y. Yi, "Microfabrication on a curved surface using 3D microlens array projection," J. Micromech. Microeng. 19, 105010 (2009).
102. P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
103. T. Ammer, M. T. Gale, and M. Rossi, "Chip-level integrated diffractive optical microlenses for multimode vertical-cavity surface-emitting laser to fiber coupling," Opt. Eng. 41, 3141-3150 (2002).
104. E. Pawlowski, and H. Vogt, "Ultraprecision molding suitable for aspheric fast-axis-collimation microlenses," Photon. Spectra 40, 64-66 (2006).
105. X. A. Huang, J. H. Ni, S. M. Yan, P. R. Leduc, J. Yao, and Q. A. Lin, "Thermally Tunable Polymer Microlenses for Biological Imaging," J. Microelectromech. S 19, 1444-1449 (2010).
106. C. M. Cheng, J. D. Kubicek, and P. R. LeDuc, "Polymeric microlenses for real-time aqueous and nonaqueous organic imaging," Appl. Phys. Lett. 88, 053902 (2006).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw