進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1209201701402300
論文名稱(中文) 復發預防因應技巧訓練方案於網路遊戲成癮高風險青少年之成效:8個月追蹤及調節變項探討
論文名稱(英文) Efficacy of the Relapse Prevention Coping Skills Training Program for Internet Gaming Addiction among Adolescents: 8-Month Follow-Up and Moderating Variables
校院名稱 成功大學
系所名稱(中) 行為醫學研究所
系所名稱(英) Institute of Behavioral Medicine
學年度 105
學期 2
出版年 106
研究生(中文) 陳映在
研究生(英文) Ying-Zai Chen
學號 S86024012
學位類別 碩士
語文別 中文
論文頁數 70頁
口試委員 口試委員-陸偉明
召集委員-王作仁
指導教授-柯慧貞
中文關鍵字 復發預防  因應技巧訓練  網路遊戲成癮 
英文關鍵字 relapse prevention  coping skills training  internet gaming addiction 
學科別分類
中文摘要 研究背景與目的
近年調查發現國中生族群具有高比例的網路遊戲使用及網路成癮盛行率。研究顯示,低度的網路遊戲使用仍可能有正向影響,然而更多研究顯示網路遊戲成癮青少年經常伴隨著臨床上的身心健康與功能的損害;故國中生的網路遊戲成癮問題之處置計畫成為重要的問題。過去已有相關介入計畫評估研究,然而,過去研究仍較少以隨機對照試驗,並進行較長期追蹤的研究設計評估網路遊戲成癮介入方案之成效,也較少調節因素之相關研究,並且,也尚無國中生預防復發因應技巧訓練成效之評估研究。
柯慧貞教授所主持之科技部計畫「臺灣國中生網路成癮之預防教育與其成效評估研究」巳探討復發預防因應技巧訓練方案或一般諮商輔導方案在六週介入之成效,本研究乃是以所蒐集之資料庫進行八個月追蹤之成效分析;此外,再進一步探討性別、高低網路遊戲成癮及高低網路遊戲可近性對介入成效之調節效果。
研究方法
原計畫由亞洲大學研究倫理委員會審查通過,乃針對兩所學校一、二年級學生,以柯氏網路遊戲成癮量表,篩檢出符合五分以上之網路遊戲成癮高風險參與者,共計87名。並隨機分派為42名參與一般諮商輔導團體組(Counseling and Guidance Group,以下簡稱CGG)進行學生輔導方案,45名進行復發預防因應技巧訓練團體組(Relapse Prevention Coping Skills Training Group,以下簡稱RPCSTG)實施高風險情境辨識及因應技巧訓練方案。
原計畫之研究工具包含個人網路遊戲使用資料表、柯氏網路遊戲成癮量表、網路遊戲正向預期、網路遊戲拒用自我效能及網路遊戲可近性等量表。研究程序分為前測、篩檢、介入、後測及八個月追蹤評估。
為符合隨機分派原則及減少流失個案之影響,本研究之數據分析採以意向分析(interntion-to-treat,ITT)準則,進行數據分析。以廣義估計方程式(generalized estimating equation,GEE)檢定組別間重複測量之改變量差異與調節效果。

結果與討論
結果顯示,RPCSTG組與CGG組前測的網路遊戲成癮總分、網路遊戲每日使用時間(平均分鐘數、是否大於兩小時比例)、網路遊戲正向預期及網路遊戲拒用自我效能上,並無顯著差異;而與前測相比,RPCSTG組的網路遊戲成癮總分,在後測及八個月追蹤測皆比CGG組有更佳的改善效果;RPCSTG組的網路遊戲成癮高風險之人數比例,在八個月追蹤測比前測的下降幅度顯著大於CGG組。
RPCSTG組的網路遊戲每日使用時間,在後測比前測的下降幅度顯著大於CGG組,而八個月後整體時間減少上,組別與時間交互作用未達顯著。但若以每日是否大於兩小時比例分析,RPCSTG組在八個月後比前測的改善程度更優於CGG組。
組別與時間在網路遊戲正向預期及拒用自我效能的交互作用未達顯著。兩組在後測及八個月追蹤測的網路遊戲正向預期,皆與前測無顯著差異;且,兩組在後測時的網路遊戲拒用自我效能皆未顯著下降。但是,RPCSTG組在八個月追蹤測的網路遊戲拒用自我效能比前測有明顯提升,而CGG組則無顯著差異。
在調節分析結果,在性別對介入成效的調節分析中,男性RPCSTG組的網路遊戲成癮總分與每日使用時間,在後測比前測的下降幅度皆優於男性CGG組;且,男性RPCSTG組的網路遊戲成癮總分,在八個月追蹤測比前測的下降幅度,仍顯著大於男性CGG組。而女性RPCSTG組的網路遊戲成癮總分及每日使用時間,在八個月追蹤測比前測的下降幅度,顯著大於女性CGG組。
在前測時高低網路遊戲成癮程度對介入成效調節分析中顯示,高網路遊戲成癮程度RPCSTG組的每日使用時間,在後測比前測的下降幅度顯著大於高成癮CGG組。
在前測時高低網路遊戲可近性對介入成效調節分析中顯示,低可近性RPCSTG組的網路遊戲成癮總分,在後測比前測時的下降幅度顯著大於低可近性CGG組;而比起前測,高可近性RPCSTG組的網路遊戲成癮總分,在後測及八個月後追蹤皆比高可近性CGG組有較大的下降程度。
結論與建議
與前測比較,RPCSTG組比CGG組在後測時更可有效緩解國中生網路遊戲成癮總分與每日使用時間;而在八個月追蹤測時,RPCSTG組的網路遊戲成癮總分、網路遊戲成癮高風險之人數比例及每日使用大於兩小時之人數比例,也比CGG組有更佳的緩解效果。RPCSTG組的網路遊戲拒用自我效能,在八個月追蹤測較前測達顯著提升;但CGG組皆未達顯著提升。另在網路遊戲正向預期上,兩組在後測及八個月追蹤測皆與前測無有顯著改變。
在調節變項方面,男性RPCSTG組的網路遊戲成癮總分與每日使用時間,在後測時有較佳的成效。而女性RPCSTG組的每日使用時間,在八個月追蹤測有較佳的成效。前測時較高的網路遊戲成癮程度RPCSTG組的每日使用時間,在後測有較佳之成效。而前測時較高的網路遊戲可近性RPCSTG組的網路遊戲成癮總分,在八個月追蹤測仍維持有較佳之成效。
未來研究仍需持續探討不同長度的介入時間、單元內容或不同類型的網路遊戲成癮的認知行為介入方案,並進一步探討更長的追蹤時間及調節效果,發展更多元及有效益的介入計畫。
英文摘要 SUMMARY
This study used that data set of grants to Professor Huei-Chen Ko, supported by the Ministry of Science and Technology (NPS101-2511-S-468-002-MY3) to further evaluate the efficacy of relapse prevention coping skills training group (RPCSTG) for IGA among high-risk junior high school students in a randomized control trial up to eight-month follow-up, and moderating roles of gender, IG addiction level, and IG accessibility.
87 high risk students were screened and assigned randomly to counseling and guidance as usual group (CGG, n = 42) and RPCSTG (n = 45). Both groups were trained with six weekly 90-minutes sessions. The IGA severity, IG daily usage time, IG use positive outcome expectancy, IG refusal self-efficacy and IG accessibility were assessed for both groups at baseline, immediately after the intervention and eight-month follow-up (F/U).
The intent-to-treat and generalized estimating equation (GEE) analyses on the longitudinal data (including all randomized participants, n=87) was performed.
Comparing to CGG, the RPCSTG had greater decreased in IGA score during post-test and eight-month F/U, high risk percent rate of IGA during eight-month F/U, IG usage time during post-test, and better effect in the rate of IG usage greater than two hours per day in eight-month F/U.
The group x time interactions on positive outcome expectancy and refusal self-efficacy of IG were not significant in post-test and eight-month F/U. However, the RPCSTG had greater increases in the refusal self-efficacy of IG in eight-month F/U.
The analyses on moderating effects showed that male-RPCSTG had greater reduction in IGA during post-test and eight-month F/U and in daily IG usage time in post-test. Female-RPCSTG’ daily IG usage time and IGA had higher decreases than female-CGG in eight-month F/U. Higher IGA severity-RPCSTG’ daily IG usage time had higher reduction than in post-test. Higher IG accessibility-RPCSTG had greater decreased in IGA levels in post-test and F/U.
RPCSTG had greater improvement in IGA levels and IG usage time compared to those in CGG. However, there were no better time effects on the improvement of positive outcome expectancy and refusal self-efficacy while the RPCSTG had greater enhancement in the IG refusal self-efficacy in eight-month F/U the intergroup differences did not reach significance. Moreover, the moderating roles of gender, IGA severity and IG accessibility should be considered in the future studies with larger sample size.

Keywords: relapse prevention, coping skills training, internet gaming addiction

INTRODUCTION
Junior high school students had been reported to have higher internet games (IG) use frequency and internet gaming addiction (IGA) prevalence. Though IGA was association with positive effects, IG overuse was increasingly recognized to be related to multiple functional impairment. The prevention and intervention program of IGA among adolescents has become an important issue.
The efficacy studies on IGA intervention program remains limited, and there is few studies investigate moderating variables with randomized control, long-term follow-up.
In Ko's study, the efficacy of relapse prevention (RP) coping skills training programs was examined among adolescents with high-risk IGA in a randomized control trial ( grants to Professor Huei-Chen Ko, supported by the Ministry of Science and Technology and entitled "Preventive Education on internet addition and its effectiveness for junior high school students in Taiwan", NPS101-2511-S-468-002-MY3).
The present study used that data set to further evaluate the efficacy of relapse prevention coping skills training group (RPCSTG) for IGA among high-risk junior high school students in a randomized control trial up to eight-month follow-up, and moderating roles of gender, IG addiction level, and IG accessibility.
METHOD
Ko's study was approved by the Research Ethics Committee of Asia University, Taiwan. Students were recruited from two junior high schools in two city, By using Ko’s DSM-5 Internet Gaming Addiction Scale, 87 high risk students were screened and assigned randomly to an counseling and guidance as usual group (CGG, n = 42) and relapse prevention coping skills training group (RPCSTG, n = 45). Both groups were trained with six weekly 90-minutes sessions. The IGA severity, IG daily usage time, IG use positive outcome expectancy, IG refusal self-efficacy and IG accessibility were assessed for both groups at baseline, immediately after the intervention and eight-month follow-up (F/U).
The intent-to-treat analysis on the longitudinal data (including all randomized participants, n=87) was performed. The missing responses among pre-test were imputed by total mean, among pose-test with subgroup mean, and among the eight-month follow-up test by the post-test data. To analyze continuous and dichotomous outcome measures over time, the generalized estimating equation (GEE) was carried out with the reference standard of time of pre-test, and the comparative group with the CGG.
RESULTS
Groups had no intergroup difference on the pretest levels of IGA, IG usage time per day (mean minutes and greater than two hours), positive outcome expectancy of IG and refusal self-efficacy of IG.
GEE showed that the group x time interactions on IGA scores were significant during post-test and eight-month F/U. Further analyses indicated that RPCSTG had greater improvement in IGA levels compared to those in CGG.
The group x time interaction on usage time was significant in post-test, but not in eight-month F/U. The group x time interaction on the rate of IG usage greater than two hours per day was not significant in post-test, but was significant in eight-month F/U. The RPCSTG had greater decreased in IG usage time compared to CGG in post-test and better effect in the rate of IG usage greater than two hours per day in eight-month F/U.
The group x time interactions on positive outcome expectancy and refusal self-efficacy of IG were not significant in post-test and eight-month F/U. However, the RPCSTG had greater increases in the refusal self-efficacy of IG in eight-month F/U.
The analyses on moderating effects of gender showed that among male students, the RPCSTG had greater reduction in IGA during post-test and eight-month F/U and in daily IG usage time in post-test. However, female-RPCSTG’ daily IG usage time and IGA had higher decreases than female-CGG in eight-month F/U.
The analyses on moderating effects of IGA severity revealed that high IGA severity students, RPCSTG’ daily IG usage time had higher reduction than in post-test.
The analyses on moderating effects of IG accessibility displayed that among students with the higher IG accessibility level, the RPCSTG had greater decreased in IGA levels compared to CGG in post-test.and F/U.
DISCUSSION
The randomized control trial with eight-month follow-up showed that RPCSTG had greater improvement in IGA levels and IG usage time compared to those in CGG. However, there were no better time effects on the improvement of positive outcome expectancy and refusal self-efficacy while the RPCSTG had greater enhancement in the IG refusal self-efficacy in eight-month F/U the intergroup differences did not reach significance. Moreover, the moderating roles of gender, IGA severity and IG accessibility should be considered in the future studies with larger sample size.
論文目次 中文摘要 ii
英文摘要 v
致謝 viii
目錄 ix
表目錄 xii
圖目錄 xii
第一章、緒論 1
第一節、網路遊戲成癮問題的重要性 1
壹、國中生網路遊戲使用率逐年上升 1
貳、網路遊戲產業之發展 2
參、網路遊戲過度使用的影響 2
肆、小結 4
第二節、網路遊戲成癮之定義與盛行率 5
壹、網路遊戲成癮定義之發展 5
貳、網路遊戲成癮之盛行率 8
參、小結 9
第三節、網路遊戲成癮之認知行為介入 10
壹、網路成癮及網路遊戲成癮相關之認知心理因子 10
貳、網路成癮及網路遊戲成癮相關之認知行為介入策略與實證研究 12
參、小結 18
第四節、網路遊戲成癮高風險青少年之復發預防因應技巧訓練成效的可能調節變項 19
壹、性別與網路遊戲成癮之關係 19
貳、成癮嚴重度與網路遊戲成癮之關係 20
參、網路遊戲可近性與網路遊戲成癮之關係 20
肆、小結 21
第五節、研究目的與假設 22
第二章、研究方法 23
第一節、研究參與者 23
壹、研究資料庫及研究者參與之工作內容 23
貳、隨機分派、資料收集率與研究最低收案人數 23
第二節、研究工具 25
壹、個人資料表 25
貳、成效評估與調節變項測量工具 25
第三節、研究程序 27
壹、研究資料庫研究程序 27
貳、復發預防因應技巧訓練方案 28
參、一般諮商輔導課程 28
肆、課程領導人訓練及督導 29
第四節、資料處理與統計分析 30
第三章、研究結果 31
第一節、樣本特性與比較 31
第二節、前測依變項比較、成效評估(後測與追蹤測量)與分析 33
壹、兩組在前測依變項比較及成效評估結果 33
貳、介入成效分析 35
第三節、調節變項分析 40
壹、性別調節依變項之結果 40
貳、網路遊戲成癮程度調節依變項之結果 46
參、網路遊戲可近性程度調節依變項之結果 50
第四章、討論 54
第一節、本研究之主要發現與解釋 54
壹、網路遊戲成癮介入成效 54
貳、網路遊戲每日使用時間及大於兩小時比例的介入成效 56
參、網路遊戲正向預期介入成效 57
肆、網路遊戲拒用自我效能介入成效 58
第二節、調節分析結果與討論 59
壹、性別與介入成效之關係 59
貳、網路遊戲成癮嚴重度與每日使用時間介入成效之關係 60
參、網路遊戲可近性與網路遊戲成癮總分介入成效之關係 61
第三節、本研究之限制與未來研究方向 62
壹、研究工具之限制 62
貳、追蹤人數及參與者性別比例 62
參、介入方案之設計 62
第四節、本研究之貢獻與應用價值 63
第五章、參考文獻 64
壹、中文文獻 64
貳、英文文獻 65
參考文獻 壹、中文文獻
张金鹏, & 阮明阳. (2009). 青少年学生网络游戏成瘾实证分析——对昆明市 3050 名大中学生的调查. 宁夏大学学报: 人文社会科学版, 31(3), 159-170.
李彥徵. (2011). 焦點解決團體諮商對網路成癮傾向青少年的網路成癮傾向, 自尊, 情緒智能及同儕關係諮商效果之研究: 國立台南大學諮商與輔導學系碩士班碩士論文, 未出版, 台南市.
李景美, 苗迺芳, & 黃惠玲. (2000). 青少年物質使用之社會學習及社會連結因素研究-以在學生為例. 健康促進暨衛生教育雜誌(20), 17-34.
柯慧貞. (2011). (第二年)全國國中生的網路成癮盛行率及其相關心理社會模式之追蹤研究。行政院國家科學委員會專題研究計畫.
柯慧貞. (2013). (第二年)台灣國中生網路成癮之預防教育與其成效評估研究。行政院國家科學委員會專題研究計畫.
柯慧貞. (2015). 網路成癮的十年耕耘:現象、成因、介入及其成效分析,論文發表於2015台灣臨床心理學會年會暨學術研討會,臺南,臺灣.
張玉佩. (2009). 遊戲, 人生: 從線上遊戲玩家探討網路世界與日常生活的結合. 新聞學研究》(TSSCI), 98, 1-45.
教育部. (2014). 103年學生網路使用情形調查報告.
教育部. (2015). 104年學生網路使用情形調查報告.
連廷嘉. (2007). 焦點解決取向團體諮商對青少年網路成癮行為之成效研究. 諮商輔導學報: 高師輔導所刊(17), 39-64.
陳永慶. (2000). 國內心理治療與諮商輔導效果的整合分析研究. 高雄醫學大學行為科學研究所學位論文, 1-138.
陳淑惠, 翁儷禎, 蘇逸人, 吳和懋, & 楊品鳳. (2003). 中文網路成癮量表之編製與心理計量特性研究. 中華心理學刊, 45(3), 279-294.
葉美玉, & 陳雅欣. (2007). 原住民青少年飲酒的認知模式-飲酒效果預期與拒酒自我效能的影響. 衛生教育學報(27), 177-193.
謝亞嫻. (2010). 現實治療團對網路成癮高危險群男高中生諮商效果之研究.

貳、英文文獻
Anderson, C. A., Shibuya, A., Ihori, N., Swing, E. L., Bushman, B. J., Sakamoto, A., . . . Saleem, M. (2010). Violent video game effects on aggression, empathy, and prosocial behavior in eastern and western countries: a meta-analytic review: American Psychological Association.
Association, A. P. (2013). Diagnostic and statistical manual of mental disorders (DSM-5): American Psychiatric Pub.
Bandura, A., & Walters, R. H. (1977). Social learning theory.
Beranuy, M., Carbonell, X., & Griffiths, M. D. (2013). A qualitative analysis of online gaming addicts in treatment. International Journal of Mental Health and Addiction, 11(2), 149-161.
Birmaher, B., Ryan, N. D., Williamson, D. E., Brent, D. A., & Kaufman, J. (1996). Childhood and adolescent depression: a review of the past 10 years. Part II. Journal of the American Academy of Child & Adolescent Psychiatry, 35(12), 1575-1583.
Blackburn, I. M., Bishop, S., Glen, A., Whalley, L., & Christie, J. (1981). The efficacy of cognitive therapy in depression: a treatment trial using cognitive therapy and pharmacotherapy, each alone and in combination. The British Journal of Psychiatry, 139(3), 181-189.
Block, J. J. (2008). Issues for DSM-V: Internet addiction: Am Psychiatric Assoc.
Butler, A. C., Chapman, J. E., Forman, E. M., & Beck, A. T. (2006). The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clinical Psychology Review, 26(1), 17-31.
Casey, B., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: what have we learned about cognitive development? Trends in cognitive sciences, 9(3), 104-110.
Choi, D., & Kim, J. (2004). Why people continue to play online games: In search of critical design factors to increase customer loyalty to online contents. CyberPsychology & Behavior, 7(1), 11-24.
Choo, H., Gentile, D. A., Sim, T., Li, D., Khoo, A., & Liau, A. K. (2010). Pathological video-gaming among Singaporean youth. Ann Acad Med Singapore, 39(11), 822-829.
Chou, C., & Hsiao, M.-C. (2000). Internet addiction, usage, gratification, and pleasure experience: the Taiwan college students’ case. Computers & Education, 35(1), 65-80.
Cleary, M., Hunt, G. E., Matheson, S., & Walter, G. (2009). Psychosocial treatments for people with co-occurring severe mental illness and substance misuse: systematic review. J Adv Nurs, 65(2), 238-258. doi: 10.1111/j.1365-2648.2008.04879.x
Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98-101.
Dakof, G. A. (2000). Understanding gender differences in adolescent drug abuse: Issues of comorbidity and family functioning. Journal of Psychoactive Drugs, 32(1), 25-32.
Delfabbro, P., & King, D. (2015). On finding the C in CBT: The challenges of applying gambling-related cognitive approaches to video-gaming. Journal of gambling studies, 31(1), 315-329.
Donker, T., Batterham, P. J., Warmerdam, L., Bennett, K., Bennett, A., Cuijpers, P., . . . Christensen, H. (2013). Predictors and moderators of response to internet-delivered interpersonal psychotherapy and cognitive behavior therapy for depression. Journal of Affective Disorders, 151(1), 343-351. doi: 10.1016/j.jad.2013.06.020
Du, Y.-s., Jiang, W., & Vance, A. (2010). Longer term effect of randomized, controlled group cognitive behavioural therapy for Internet addiction in adolescent students in Shanghai. Australian and New Zealand Journal of Psychiatry, 44(2), 129-134.
Duong, M. T., Kelly, B. M., Haaland, W. L., Matsumiya, B., Huey, S. J., Jr., & McCarty, C. A. (2016). Mediators and moderators of a school-based cognitive-behavioral depression prevention program. Cognitive Therapy and Research, 40(5), 705-716. doi: 10.1007/s10608-016-9780-2
Ferguson, C. J., Coulson, M., & Barnett, J. (2011). A meta-analysis of pathological gaming prevalence and comorbidity with mental health, academic and social problems. Journal of psychiatric research, 45(12), 1573-1578.
Festl, R., Scharkow, M., & Quandt, T. (2013). Problematic computer game use among adolescents, younger and older adults. Addiction, 108(3), 592-599.
Fischer, S., Anderson, K. G., & Smith, G. T. (2004). Coping with distress by eating or drinking: role of trait urgency and expectancies. Psychology of Addictive Behaviors, 18(3), 269.
Fisher, S. (1994). Identifying video game addiction in children and adolescents. Addictive behaviors, 19(5), 545-553.
Fromme, K., & D'amico, E. J. (2000). Measuring adolescent alcohol outcome expectancies. Psychology of Addictive Behaviors, 14(2), 206.
Gentile, D. (2009). Pathological video-game use among youth ages 8 to 18 A National Study. Psychological science, 20(5), 594-602.
Gentile, D. A., Choo, H., Liau, A., Sim, T., Li, D., Fung, D., & Khoo, A. (2011). Pathological video game use among youths: a two-year longitudinal study. Pediatrics, peds. 2010-1353.
Grüsser, S. M., Thalemann, R., & Griffiths, M. D. (2006). Excessive computer game playing: evidence for addiction and aggression? CyberPsychology & Behavior, 10(2), 290-292.
Griffiths, M. D., Kuss, D. J., & Pontes, H. M. (2016). A brief overview of Internet Gaming Disorder and its treatment. Australian Clinical Psychologist, 2(1), 20108.
Guyatt, G. H., Oxman, A. D., Sultan, S., Glasziou, P., Akl, E. A., Alonso-Coello, P., . . . Montori, V. (2011). GRADE guidelines: 9. Rating up the quality of evidence. Journal of clinical epidemiology, 64(12), 1311-1316.
Hendershot, C. S., Witkiewitz, K., George, W. H., & Marlatt, G. A. (2011). Relapse prevention for addictive behaviors. Substance abuse treatment, prevention, and policy, 6(1), 17.
Hoeft, F., Watson, C. L., Kesler, S. R., Bettinger, K. E., & Reiss, A. L. (2008). Gender differences in the mesocorticolimbic system during computer game-play. Journal of psychiatric research, 42(4), 253-258.
Hoffman, D. L., Novak, T. P., & Schlosser, A. E. (2001). The evolution of the digital divide: Examining the relationship of race to Internet access and usage over time. The digital divide: Facing a crisis or creating a myth, 47-97.
Hofmann, S. G., Asnaani, A., Vonk, I. J., Sawyer, A. T., & Fang, A. (2012). The efficacy of cognitive behavioral therapy: A review of meta-analyses. Cognitive Therapy and Research, 36(5), 427-440.
Hollis, S., & Campbell, F. (1999). What is meant by intention to treat analysis? Survey of published randomised controlled trials. BMJ, 319(7211), 670-674.
Horowitz, J. L., & Garber, J. (2006). The prevention of depressive symptoms in children and adolescents: A meta-analytic review. J Consult Clin Psychol, 74(3), 401-415. doi: 10.1037/0022-006x.74.3.401
Jones, B. T., Corbin, W., & Fromme, K. (2001). A review of expectancy theory and alcohol consumption. Addiction, 96(1), 57-72.
Karyadi, K. A., VanderVeen, J. D., & Cyders, M. A. (2014). A meta-analysis of the relationship between trait mindfulness and substance use behaviors. Drug and alcohol dependence, 143, 1-10.
Katz, E. C., Fromme, K., & D'Amico, E. J. (2000). Effects of outcome expectancies and personality on young adults' illicit drug use, heavy drinking, and risky sexual behavior. Cognitive Therapy and Research, 24(1), 1-22.
Khantzian, E. J. (1985). The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am J Psychiatry, 142(11), 1259-1264.
Kim, S. M., Han, D. H., Lee, Y. S., & Renshaw, P. F. (2012). Combined cognitive behavioral therapy and bupropion for the treatment of problematic on-line game play in adolescents with major depressive disorder. Computers in Human Behavior, 28(5), 1954-1959.
King, D. L., & Delfabbro, P. H. (2014). Internet gaming disorder treatment: a review of definitions of diagnosis and treatment outcome. Journal of Clinical Psychology, 70(10), 942-955.
King, D. L., Haagsma, M. C., Delfabbro, P. H., Gradisar, M., & Griffiths, M. D. (2013). Toward a consensus definition of pathological video-gaming: A systematic review of psychometric assessment tools. Clinical psychology review, 33(3), 331-342.
Kivlahan, D. R., Marlatt, G. A., Fromme, K., Coppel, D. B., & Williams, E. (1990). Secondary prevention with college drinkers: evaluation of an alcohol skills training program. Journal of consulting and clinical psychology, 58(6), 805.
Klajner, F., Hartman, L. M., & Sobell, M. B. (1984). Treatment of substance abuse by relaxation training: a review of its rationale, efficacy and mechanisms. Addictive behaviors, 9(1), 41-55.
Ko, C.-H., Yen, J.-Y., Chen, C.-C., Chen, S.-H., & Yen, C.-F. (2005). Gender differences and related factors affecting online gaming addiction among Taiwanese adolescents. The Journal of nervous and mental disease, 193(4), 273-277.
Ko, H. C. (2015). Prevalence, Antecedent and Consequences, and Prevention for Internet Addiction among Elementary, Middle and High School Students in Taiwan. The 4th International Society of Internet Addiction (ISIA) Annual Conference. Oct 23th 2015, Osaka University, Japan.
Kuss, D. J., & Griffiths, M. D. (2012). Internet gaming addiction: A systematic review of empirical research. International Journal of Mental Health and Addiction, 10(2), 278-296.
Lam, L. T. (2014). Internet gaming addiction, problematic use of the internet, and sleep problems: A systematic review. Current psychiatry reports, 16(4), 1-9.
Larimer, M. E., & Palmer, R. S. (1999). Relapse prevention: An overview of Marlatt's cognitive-behavioral model. Alcohol research and Health, 23(2), 151-160.
Li, H., & Wang, S. (2013). The role of cognitive distortion in online game addiction among Chinese adolescents. Children and Youth Services Review, 35(9), 1468-1475.
Lin, M.-P., Ko, H.-C., & Wu, J. Y.-W. (2008). The role of positive/negative outcome expectancy and refusal self-efficacy of Internet use on Internet addiction among college students in Taiwan. CyberPsychology & Behavior, 11(4), 451-457.
Loton, D., & Lubman, D. I. (2016). Just one more level: Identifying and addressing internet gaming disorder within primary care. Australian family physician, 45(1), 48.
Maher, M. J., Huppert, J. D., Chen, H., Duan, N., Foa, E. B., Liebowitz, M. R., & Simpson, H. B. (2010). Moderators and predictors of response to cognitive-behavioral therapy augmentation of pharmacotherapy in obsessive-compulsive disorder. Psychol Med, 40(12), 2013-2023. doi: 10.1017/s0033291710000620
Marlatt, G. A., & Donovan, D. M. (2005). Relapse prevention: Maintenance strategies in the treatment of addictive behaviors: New York: Guilford Press.
Marlatt, G. A., & Gordon, J. R. (1985). Relapse prevention: Maintenance strategies in addictive behavior change. New York: Guilford.
McChargue, D. E., Spring, B., Cook, J. W., & Neumann, C. A. (2004). Reinforcement expectations explain the relationship between depressive history and smoking status in college students. Addictive behaviors, 29(5), 991-994.
Mentzoni, R. A., Brunborg, G. S., Molde, H., Myrseth, H., Skouverøe, K. J. M., Hetland, J., & Pallesen, S. (2011). Problematic video game use: estimated prevalence and associations with mental and physical health. Cyberpsychology, behavior, and social networking, 14(10), 591-596.
Michael, X. Q. (2008). Demographics, motivations, addictions and usage patterns among Chinese college student MMORPG players. Unpublished theses. Chinese University of Hong Kong.
Morahan-Martin, J., & Schumacher, P. (2000). Incidence and correlates of pathological Internet use among college students. Computers in Human Behavior, 16(1), 13-29.
Morgenstern, J., & McKay, J. R. (2007). Rethinking the paradigms that inform behavioral treatment research for substance use disorders. Addiction, 102(9), 1377-1389.
Neil, A. L., & Christensen, H. (2009). Efficacy and effectiveness of school-based prevention and early intervention programs for anxiety. Clinical psychology review, 29(3), 208-215.
Ng, B. D., & Wiemer-Hastings, P. (2005). Addiction to the internet and online gaming. CyberPsychology & Behavior, 8(2), 110-113.
Park, S. K., Kim, J. Y., & Cho, C. B. (2008). Prevalence of Internet addiction and correlations with family factors among South Korean adolescents. Adolescence, 43(172), 895.
Petry, N. M., & O'brien, C. P. (2013). Internet gaming disorder and the DSM‐5. Addiction, 108(7), 1186-1187.
Przybylski, A. K. (2014). Electronic gaming and psychosocial adjustment. Pediatrics, 134(3), e716-e722.
Rehbein, F., Kliem, S., Baier, D., Mößle, T., & Petry, N. M. (2015). Prevalence of internet gaming disorder in German adolescents: diagnostic contribution of the nine DSM‐5 criteria in a state‐wide representative sample. Addiction, 110(5), 842-851.
Sasso, K. E., Strunk, D. R., Braun, J. D., DeRubeis, R. J., & Brotman, M. A. (2015). Identifying moderators of the adherence-outcome relation in cognitive therapy for depression. Journal of consulting and clinical psychology, 83(5), 976-984. doi: 10.1037/ccp000004510.1037/ccp0000045.supp (Supplemental)
Seok, S., & DaCosta, B. (2012). The world’s most intense online gaming culture: Addiction and high-engagement prevalence rates among South Korean adolescents and young adults. Computers in Human Behavior, 28(6), 2143-2151.
Soper, W. B., & Miller, M. J. (1983). Junk-time junkies: An emerging addiction among students. The School Counselor, 31(1), 40-43.
Starcevic, V., Berle, D., Porter, G., & Fenech, P. (2011). Problem video game use and dimensions of psychopathology. International Journal of Mental Health and Addiction, 9(3), 248-256.
Stephens, R. S., Wertz, J. S., & Roffman, R. A. (1995). Self-efficacy and marijuana cessation: a construct validity analysis. Journal of consulting and clinical psychology, 63(6), 1022.
Stice, E., Shaw, H., Bohon, C., Marti, C. N., & Rohde, P. (2009). A meta-analytic review of depression prevention programs for children and adolescents: factors that predict magnitude of intervention effects. J Consult Clin Psychol, 77(3), 486-503. doi: 10.1037/a0015168
Tolchinsky, A., & Jefferson, S. D. (2011). Problematic video game play in a college sample and its relationship to time management skills and attention-deficit/hyperactivity disorder symptomology. Cyberpsychology, behavior, and social networking, 14(9), 489-496.
Vyskocilova, J., Prasko, J., Sipek, J., & Slepecky, M. (2017). Cognitive behavioral therapy added to pharmacotherapy in patients suffering from pharmacoresistant obsessive-compulsive disorder. European Psychiatry, 41, S643-S644.
Winkler, A., Dörsing, B., Rief, W., Shen, Y., & Glombiewski, J. A. (2013). Treatment of internet addiction: a meta-analysis. Clinical psychology review, 33(2), 317-329.
Wu, J. Y. W., Ko, H.-C., Wong, T.-Y., Wu, L.-A., & Oei, T. P. (2016). Positive Outcome Expectancy Mediates the Relationship Between Peer Influence and Internet Gaming Addiction Among Adolescents in Taiwan. Cyberpsychology, behavior, and social networking, 19(1), 49-55.
Yee, N. (2006). Motivations for play in online games. CyberPsychology & Behavior, 9(6), 772-775.
Yellowlees, P. M., & Marks, S. (2007). Problematic Internet use or Internet addiction? Computers in Human Behavior, 23(3), 1447-1453.
Yen, J.-Y., Yen, C.-F., Chen, C.-C., Chen, S.-H., & Ko, C.-H. (2007). Family factors of internet addiction and substance use experience in Taiwanese adolescents. CyberPsychology & Behavior, 10(3), 323-329.
Young, K. S. (1996). Psychology of computer use: XL. Addictive use of the Internet: a case that breaks the stereotype. Psychological reports, 79(3), 899-902.
Young, K. S. (1998). Internet addiction: The emergence of a new clinical disorder. CyberPsychology & Behavior, 1(3), 237-244.
Zvolensky, M. J., Feldner, M. T., Leen-Feldner, E., Bonn-Miller, M. O., McLeish, A. C., & Gregor, K. (2004). Evaluating the role of anxiety sensitivity in smoking outcome expectancies among regular smokers. Cognitive Therapy and Research, 28(4), 473-486.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw