進階搜尋


 
系統識別號 U0026-1209201312073700
論文名稱(中文) Fe2TiO5薄膜與TiO2/Fe2O3複合膜之光催化特性研究
論文名稱(英文) Study on photocatalytic properties of Fe2TiO5 thin film and TiO2/Fe2O3 composites
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 101
學期 2
出版年 102
研究生(中文) 李冠嬅
研究生(英文) Kuan-Hua Li
學號 L46004115
學位類別 碩士
語文別 中文
論文頁數 99頁
口試委員 指導教授-陳燕華
口試委員-齊孝定
口試委員-吳毓純
口試委員-李建興
中文關鍵字 二氧化鈦薄膜  赤鐵礦薄膜  複合薄膜  鐵鈦氧薄膜  射頻磁控濺鍍  光催化 
英文關鍵字 TiO2 film  Fe2O3 film  Fe2TiO5 film  RF magnetron sputtering  photocatalysis 
學科別分類
中文摘要 本研究利用磁控濺鍍系統將TiO2和Fe2O3薄膜進行疊層成複合薄膜,此目的可使其能隙座落在可見光範圍,且又可提升光催化效率。本研究將探討TiO2/Fe2O3複合薄膜與Fe2TiO5薄膜之光催化特性,並解釋其光催化機制。
TiO2薄膜由XRD分析為純銳鈦礦相;從FE-SEM影像可瞭解隨著濺鍍時間增加,TiO2薄膜之膜厚與粒徑隨之增加;成分分析結果為純粹的Ti與O的成份,沒有其它雜質;AFM所量測到的粗糙度是隨著膜厚增加而愈粗糙;能隙大小和光催化效果則是與TiO2薄膜中的Ti3+/Ti4+比例有著極大的關連性。Fe2O3薄膜為純赤鐵礦相;從FE-SEM結果可觀察到Fe2O3薄膜的膜厚隨著時間增加而變厚,經EDS分析只有Fe與O的成份;Fe2O3薄膜因後退火之故導致表面粗糙度較無規則性;Fe2O3薄膜之光催化效率隨著膜厚增厚而提升。
TiO2/Fe2O3複合薄膜分別為純銳鈦礦相與赤鐵礦相;TiO2/Fe2O3能隙波段坐落於紫外光,Fe2O3/TiO2能隙波段則位於可見光範圍;兩種複合薄膜的光催化效果雷同,且皆優於單一TiO2或Fe2O3薄膜之光催化效率;推測其原因為電子與電洞可以在TiO2或Fe2O3之價帶或導帶間躍遷,降低電子與電洞復合的機率,進而提高光催化效能。Fe2TiO5薄膜藉由XRD分析為斜方晶系,能隙波段位於可見光範疇,光催化效率極好。Fe2TiO5薄膜之光催化機制與薄膜中所含有之Fe2+/Fe3+與Ti3+/Ti4+比例有關,利用元素間不同價態之電子轉移,促進電子與電洞有效分離,以增進光催化效率。Fe2TiO5薄膜與TiO2/Fe2O3複合薄膜二者之光催化效率相仿。
英文摘要 TiO2/Fe2O3 and Fe2O3/TiO2 thin films are fabricated by using r.f. magnetron sputtering system. They can be applied within the Vis-light range and enhanced their photocatalytic efficiency. We will investigate photocatalytic properties and mechanism between the TiO2/Fe2O3 (Fe2O3/TiO2) film and Fe2TiO5 film.
TiO2 films possess a polycrystalline anatase phase by XRD examination. The film thickness and grain size of TiO2 films increase with the increasing sputtering time, which have a pure composition of Ti and O elements. The surface roughness of TiO2 films becomes larger with the increasing film thickness. The band gap and photocatalytic efficiency are related to the ratio of Ti3+/Ti4+ in the TiO2 films.
From the XRD result, Fe2O3 films are the pure hemanite phase. The film thickness of Fe2O3 films increases with time observed by FE-SEM, and they only have the elements of Fe and O atoms by EDS analyses. The roughness and band gap of these films are irregular due to the posting annealing. The photocatalytic activity of Fe2O3 films increases with the increasing film thickness.
The composite films of TiO2(90 min)/Fe2O3(20 min) and Fe2O3(20 min)/TiO2(90 min) are individually pure anatase and hematite phase. The band gap of TiO2(90 min)/Fe2O3(20 min) is within the UV-light wavelength, while that of Fe2O3(20 min)/TiO2(90 min) is in the Vis-light range. The two composite films have a similar photocatalytic ability, which is better than that of single TiO2 and Fe2O3 films. This may be resulted from electrons or holes can be hopped between valence band and conduction band to reduce the recovery of electrons and holes. Consequently, the photocatalytic ability is enhanced.
Fe2TiO5 film is polycrystalline orthorhombic phase from XRD investigation. The band gap of Fe2TiO5 films is in the Vis-light region. The photocatalytic efficiency is very good and similar with that of the composite film. The photocatalytic mechanism is related to the ratio of Fe2//Fe3+ and Ti3+/Ti4+ in the Fe2TiO5 film. It is because the charge transfer between the element with different chemical states, and thus it can effectively separate the electron and hole pairs to promote the photocatalytic activity.
論文目次 中文摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 X
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 背景資料 3
2-1 研究材料簡介 3
2-1-1 二氧化鈦 3
2-1-2 赤鐵礦 4
2-2-1 光催化原理 5
2-2-2 複合薄膜之光催化機制 6
2-3 光催化動力學模式 7
2-4 薄膜沉積 9
2-4-1 薄膜沉積理論 10
2-4-2 薄膜形成之機制 14
2-5 濺鍍原理 15
2-5-1 直流濺鍍與射頻濺鍍 15
2-5-2 磁控濺鍍 16
2-6 不同材料之光催化比較 17
第三章 研究方法 23
3-1 實驗流程 23
3-1-1實驗材料與儀器 24
3-2 陶瓷靶材製作 25
3-3 基板清洗 28
3-4赤鐵礦薄膜之製備 29
3-5銳鈦礦薄膜之製備 30
3-6 銳鈦礦/赤鐵礦複合薄膜之製備 31
3-7 Fe2TiO5薄膜之製備 32
3-8薄膜特性分析 33
3-8-1 X光繞射儀(XRD) 33
3-8-2 場發射掃描式電子顯微鏡(FE-SEM) 34
3-8-3 原子力顯微鏡(AFM) 35
3-8-4 化學分析電子術(ESCA) 36
3-8-5 固態紫外光-可見光光譜儀 36
3-8-6 液態紫外光-可見光光譜儀 37
第四章 結果與討論 38
4-1場發射掃瞄式電子顯微鏡分析結果 38
4-2 X光繞射儀分析結果 43
4-3原子力顯微鏡分析結果 49
4-4 X光光電子能譜儀分析結果 53
4-5 固態紫外光-可見光光譜儀分析結果 63
4-6 光降解有機染料 69
4-7 與前人文獻比較 79
第五章 結論 84
參考文獻 86
參考文獻 1. A. Sobczynski and A. Dobosz, Water purification by photocatalysis on semiconductors. , Polish Journal of Environmental Studies 10 (2001), no. 4, 11.
2. P. Niu and J. Hao, Photocatalytic degradation of methyl orange by titanium dioxide-decatungstate nanocomposite films supported on glass slides, Colloids and Surfaces A: Physicochemical and Engineering Aspects 431 (2013), 127-132.
3. P.A. Pekakis, N.P. Xekoukoulotakis and D. Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis, Water research 40 (2006), no. 6, 1276-1286.
4. J. Zhang, W. Fu, J. Xi, H. He, S. Zhao, H. Lu and Z. Ji, N-doped rutile TiO2 nano-rods show tunable photocatalytic selectivity, Journal of Alloys and Compounds 575 (2013), 40-47.
5. O. Yayapao, T. Thongtem, A. Phuruangrat and S. Thongtem, Sonochemical synthesis of dy-doped ZnO nanostructures and their photocatalytic properties, Journal of Alloys and Compounds 576 (2013), 72-79.
6. H. Lee, J. Choi, S. Lee, S.-T. Yun, C. Lee and J. Lee, Kinetic enhancement in photocatalytic oxidation of organic compounds by WO3 in the presence of fenton-like reagent, Applied Catalysis B: Environmental 138-139 (2013), 311-317.
7. Y. Liu, Y.-X. Yu and W.-D. Zhang, Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance, Journal of Alloys and Compounds 569 (2013), 102-110.
8. 林有銘, 功能性粉末奈米光觸媒, 科學發展 第408期 (2006), 第1-8頁.
9. S. Khan, I.A. Qazi, I. Hashmi, M.A. Awan and N.-u.-S.S. Zaidi, Synthesis of silver-doped titanium TiO2 powder-coated surfaces and its ability to inactivate pseudomonas aeruginosa and bacillus subtilis, Journal of Nanomaterials 2013 (2013), 1-8.
10. O. Myakonkaya, Z. Hu, M.F. Nazar and J. Eastoe, Recycling functional colloids and nanoparticles, Chemistry 16 (2010), no. 39, 11784-11790.
11. M. Marwede, W. Berger, M. Schlummer, A. Mäurer and A. Reller, Recycling paths for thin-film chalcogenide photovoltaic waste – current feasible processes, Renewable Energy 55 (2013), 220-229.
12. I.P. Parkin and R.G. Palgrave, Self-cleaning coatings, Journal of Materials Chemistry 15 (2005), no. 17, 1689.
13. K.S. Yoshihiko Kikuchi, Tomokazu Iyoda,Kazuhito Hashimoto,Akira Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: Dynamic view of the active oxygen species responsible for the effect, Journal of Photochemistry and Photobiology A: Chemistry 106 (1997), 51-56.
14. H. Yu, S.C. Lee, J. Yu and C.H. Ao, Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers, Journal of Molecular Catalysis A: Chemical 246 (2006), no. 1-2, 206-211.
15. Z. Pan, P. Zhang, X. Tian, G. Cheng, Y. Xie, H. Zhang, X. Zeng, C. Xiao, G. Hu and Z. Wei, Properties of fluorine and tin Co-doped ZnO thin films deposited by sol–gel method, Journal of Alloys and Compounds 576 (2013), 31-37.
16. A. Petitmangin, B. Gallas, C. Hebert, J. Perrière, L. Binet, P. Barboux and X. Portier, Characterization of oxygen deficient gallium oxide films grown by pld, Applied Surface Science 278 (2013), 153-157.
17. S.H. Abud, A. Ramiy, A.S. Hussein, Z. Hassan and F.K. Yam, A comparative study of the structural and electrical properties of n-type ingan epilayer grown by mbe and commercially, Superlattices and Microstructures 60 (2013), 224-230.
18. M. Anusha and D. Arivuoli, High intense violet luminescence in fluorine doped zinc oxide (FZO) thin films deposited by aerosol assisted cvd, Journal of Alloys and Compounds 580 (2013), 131-136.
19. F. Smeacetto, M. Salvo, L.C. Ajitdoss, S. Perero, T. Moskalewicz, S. Boldrini, L. Doubova and M. Ferraris, Yttria-stabilized zirconia thin film electrolyte produced by RF sputtering for solid oxide fuel cell applications, Materials Letters 64 (2010), no. 22, 2450-2453.
20. M. Cernea, Methods for preparation of BaTiO3 thin films, Journal of Opotoelectronics and Advanced Materials 6 (2004), no. 4,
1349-1356.
21. S.T. Navale, D.K. Bandgar, S.R. Nalage, G.D. Khuspe, M.A. Chougule, Y.D. Kolekar, S. Sen and V.B. Patil, Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications, Ceramics International 39 (2013), no. 6, 6453-6460.
22. P. Sun, Y. Cai, S. Du, X. Xu, L. You, J. Ma, F. Liu, X. Liang, Y. Sun and G. Lu, Hierarchical α-Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties, Sensors and Actuators B: Chemical 182 (2013), 336-343.
23. J. Wang, X. Wang, Y. Song, J. Wang, C. Zhang, C. Chang, J. Yan, L. Qiu, M. Wu and Z. Guo, A platinum anticancer theranostic agent with magnetic targeting potential derived from maghemite nanoparticles, Chemical Science 4 (2013), no. 6, 2605-2612.
24. X.Y. Zhao, Y.J. Zhu, F. Chen, B.Q. Lu, C. Qi, J. Zhao and J. Wu, Calcium phosphate hybrid nanoparticles: Self-assembly formation, characterization, and application as an anticancer drug nanocarrier, Chemistry, an Asian journal 8 (2013), no. 6, 1306-1312.
25. F.X. Ye, T. Tsumura, K. Nakata and A. Ohmori, Dependence of photocatalytic activity on the compositions and photo-absorption of functional TiO2–Fe3O4 coatings deposited by plasma spray, Materials Science and Engineering: B 148 (2008), no. 1-3, 154-161.
26. Y.R. Smith, K. Joseph Antony Raj, V. Subramanian and B. Viswanathan, Sulfated Fe2O3–TiO2 synthesized from ilmenite ore: A visible light active photocatalyst, Colloids and Surfaces A: Physicochemical and Engineering Aspects 367 (2010), no. 1-3, 140-147.
27. O. Akhavan and R. Azimirad, Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation, Applied Catalysis A: General 369 (2009), no. 1-2, 77-82.
28. B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan and V. Murugesan, Sol-gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: Application for degradation of 4-chlorophenol, Journal of hazardous materials 252-253 (2013), 233-242.
29. M.A. Ahmed, E.E. El-Katori and Z.H. Gharni, Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method, Journal of Alloys and Compounds 553 (2013), 19-29.
30. O. Akhavan, Thickness dependent activity of nanostructured TiO2/α-Fe2O3 photocatalyst thin films, Applied Surface Science 257 (2010), no. 5, 1724-1728.
31. E. Popova, H. Ndilimabaka, B. Warot-Fonrose, M. Bibes, N. Keller, B. Berini, F. Jomard, K. Bouzehouane and Y. Dumont, Growth of the magnetic semiconductor Fe2−x Ti x O3±δ thin films by pulsed laser deposition, Applied Physics A 93 (2008), no. 3, 669-674.
32. 申泮文、車雲霞, 無機化學叢書, 北京:科學出版社 (1998).
33. 高濂、鄭珊、張清紅, 奈米光觸媒, 五南圖書出版股份有限公司 (2011), 57-59.
34. Y.-T. Lin, C.-H. Weng, H.-J. Hsu, Y.-H. Lin and C.-C. Shiesh, The synergistic effect of nitrogen dopant and calcination temperature on the visible-light-induced photoactivity of n-doped TiO2, International Journal of Photoenergy 2013 (2013), 1-13.
35. C.L. Ju-Young Park, Kwang-Woo Jung,* and Dongwoon Jung*, Structure related photocatalytic properties of TiO2, Bull. Korean Chem. Soc. 30 (2009), no. 2, 402-404.
36. 余樹楨, 晶體之結構與性質, 渤海堂文化公司印行
(2007), 280-285.
37. M. Landmann, E. Rauls and W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, Journal of physics. Condensed matter : an Institute of Physics journal 24 (2012), no. 19, 195503,1-9.
38. M. Dey,A. Choudhury,Biswajit Choudhury*, Defect generation, d-d transition, and band gap reduction in cu-doped TiO2 nanoparticles, International Nano Letters 3 (2013), no. 25,1-8.
39. L. Xiong, J. Li and Y. Yu, Energy storage in bifunctional TiO2 composite materials under uv and visible light, Energies 2 (2009), no. 4, 1009-1030.
40. A. Banerjee, The design, fabrication, and photocatalytic utility of nanostructured semiconductors: Focus on TiO2-based nanostructures, Nanotechnology, Science and Applications (2011), no. 4,35-65.
41. O. Carp, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry 32 (2004), no. 1-2, 33-177.
42. H. Liu, W.A. Caldwell, L.R. Benedetti, W. Panero and R. Jeanloz, Static compression of α-Fe2O3: Linear incompressibility of lattice parameters and high-pressure transformations, Physics and Chemistry of Minerals 30 (2003), no. 9, 582-588.
43. C.M. EGGLESTON*, The surface structure of α-Fe2O3(001) by scanning tunneling microscopy:Implications for interfacial electron transfer reactions, American Mineralogist 84 (1999), 10,1061-1070.
44. R.R. Rangaraju, A. Panday, K.S. Raja and M. Misra, Nanostructured anodic iron oxide film as photoanode for water oxidation, Journal of Physics D: Applied Physics 42 (2009), no. 13, 135303,1-10.
45. H. Li, Q. Zhao, X. Li, Z. Zhu, M. Tade and S. Liu, Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite, Journal of Nanoparticle Research 15 (2013),1670.
46. T.L. Lin X. Chen, Marion C. Thurnauer, Roseann Csencsits, and Tijana Rajh, Fe2O3 nanoparticle structures investigated by x-ray absorption near-edge structure,surface modifications, and model calculations, J. Phys. Chem. B 106 (2002), 8539-8546.
47. R. Kar, Performance study on photocatalysis of phenol solution in a UV irradiated reactor, Journal of Chemical Engineering & Process Technology 04 (2012), no. 01,1-7.
48. M.N.R ashed.A.A. El-Amin, Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources, International Journal of Physical Sciences 2 (2007), no. 3,73-81.
49. E. Adamek, W. Baran, J. Ziemiańska and A. Sobczak, The comparison of photocatalytic degradation and decolorization processes of dyeing effluents, International Journal of Photoenergy 2013 (2013), 1-11.
50. N.A. LAOUFI*, D. TASSALIT and F. BENTAHAR, The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor, Global NEST Journal 10 (2008), no. 3,404-418.
51. H. Wang, H.L. Wang, W.F. Jiang and Z.Q. Li, Photocatalytic degradation of 2,4-dinitrophenol (dnp) by multi-walled carbon nanotubes (mwcnts)/TiO2 composite in aqueous solution under solar irradiation, Water research 43 (2009), no. 1, 204-210.
52. T.K. Ghorai, M. Chakraborty and P. Pramanik, Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis, Journal of Alloys and Compounds 509 (2011), no. 32, 8158-8164.
53. M. Lazar, S. Varghese and S. Nair, Photocatalytic water treatment by titanium dioxide: Recent updates, Catalysts 2 (2012), no. 4, 572-601.
54. A. Idris, N. Hassan, R. Rashid and A.F. Ngomsik, Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (vi) reduction under sunlight, Journal of hazardous materials 186 (2011), no. 1, 629-635.
55. H. Gnaser, Energy spectra of sputtered ions: Assessment of the instrumental resolution, Surface and Interface Analysis 45 (2013), no. 1, 79-82.
56. A. Wucher, K.D. Krantzman, C. Lu and N. Winograd, A statistical interpretation of molecular delta layer depth profiles, Surface and Interface Analysis 45 (2013), no. 1, 39-41.
57. M. Ohring, The materials science of thin films, 2nd edition, Academic Press (1992).
58. 莊達人, Vlsi製造技術, 高立圖書出版,新北市 (1995).
59. L. Davis, Properties of transparent conducting oxides deposited
at room temperature, Thin Solid Films 236 (1993), 5.
60. 田民波, 薄膜技術與薄膜材料, 五南圖書出版公司 (2007).
61. J. Colin, Size selection of strained islands during stranski–krastanov growth, Thin Solid Films 536 (2013), 187-190.
62. K. Baba, R. Hatada, S. Flege and W. Ensinger, Preparation and properties of ag-containing diamond-like carbon films by magnetron plasma source ion implantation, Advances in Materials Science and Engineering 2012 (2012), 1-5.
63. C. Li, D. Wang, Z. Li, X. Li, T. Kawaharamura and M. Furuta, Stoichiometry control of ZnO thin film by adjusting working gas ratio during radio frequency magnetron sputtering, Journal of Materials 2013 (2013), 1-6.
64. E.N. Annemie Bogaerts *, Renaat Gijbels , Joost van der Mullen, Gas discharge plasmas and their applications, Spectrochimica Acta Part B 57 (2002).
65. 陳光華、鄧金祥, 奈米薄膜技術與應用, 五南圖書出版公司 (2005).
66. J.L. Vossen, W. Kern, Thin film process,new york, , Academic Press, (1978).
67. J.W. Shi, H.J. Cui, J.W. Chen, M.L. Fu, B. Xu, H.Y. Luo and Z.L. Ye, TiO2/activated carbon fibers photocatalyst: Effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability, Journal of colloid and interface science 388 (2012), no. 1, 201-208.
68. G. Jiang, X. Wang, Y. Zhou, R. Wang, R. Hu, X. Xi and W. Chen, Hollow TiO2 nanocages with rubik-like structure for high-performance photocatalysts, Materials Letters 89 (2012), 59-62.
69. W.D. Yan Wang, and Yiming Xu, Effect of sintering temperature on the photocatalytic activities and stabilities of hematite and silica-dispersed hematite particles for organic degradation in aqueous suspensions, Langmuir 25 (2009), 2895-2899.
70. P. Kumar, P. Sharma, R. Shrivastav, S. Dass and V.R. Satsangi, Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting, International Journal of Hydrogen Energy 36 (2011), no. 4, 2777-2784.
71. Q.D. Truong, J.-Y. Liu, C.-C. Chung and Y.-C. Ling, Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst, Catalysis Communications 19 (2012), 85-89.
72. Olga Rusina, A.E. Oksana Linnik and a.H. Kisch, Nitrogen photofixation on nanostructured iron titanate films, Chem. Eur. J. 9 (2003), no. 2, 561-565.
73. T.-D. Nguyen-Phan, V.H. Pham, T.V. Cuong, S.H. Hahn, E.J. Kim, J.S. Chung, S.H. Hur and E.W. Shin, Fabrication of TiO2 nanostructured films by spray deposition with high photocatalytic activity of methylene blue, Materials Letters 64 (2010), no. 12, 1387-1390.
74. H.A. Le, L.T. Linh, S. Chin and J. Jurng, Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon, Powder Technology 225 (2012), 167-175.
75. N.R. Khalid, E. Ahmed, Z. Hong and M. Ahmad, Synthesis and photocatalytic properties of visible light responsive La/TiO2-graphene composites, Applied Surface Science 263 (2012), 254-259.
76. S.D. Delekar, H.M. Yadav, S.N. Achary, S.S. Meena and S.H. Pawar, Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles, Applied Surface Science 263 (2012), 536-545.
77. S.-H. Wang, K.-H. Wang, Y.-M. Dai and J.-M. Jehng, Water effect on the surface morphology of TiO2 thin film modified by polyethylene glycol, Applied Surface Science 264 (2013), 470-475.
78. Zhonghai Zhang, Md. Faruk Hossain, A. Takayuki Miyazaki and T. Takahashi, Gas phase photocatalytic activity of ultrathin pt layer coated on r-Fe2O3 films under visible light illumination, Environ. Sci. Technol. 44 (2010), 4741-4746.
79. X.H. Jiyun Feng, * Po Lock Yue, Discoloration and mineralization of orange ii using different heterogeneous catalysts containing Fe: A comparative study, Environ. Sci. Technol. 38 (2004), 5773-5778.
80. G.-Y. Zhang, Y. Feng, Y.-Y. Xu, D.-Z. Gao and Y.-Q. Sun, Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property, Mater. Res. Bull. 47 (2012), no. 3, 625-630.
81. H. Zhang, X. Wu, Y. Wang, X. Chen, Z. Li, T. Yu, J. Ye and Z. Zou, Preparation of Fe2O3/SrTiO3 composite powders and their photocatalytic properties, Journal of Physics and Chemistry of Solids 68 (2007), no. 2, 280-283.
82. H. Liu, H.K. Shon, X. Sun, S. Vigneswaran and H. Nan, Preparation and characterization of visible light responsive Fe2O3–TiO2 composites, Applied Surface Science 257 (2011), no. 13, 5813-5819.
83. L. Peng, T. Xie, Y. Lu, H. Fan and D. Wang, Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts, Physical chemistry chemical physics : PCCP 12 (2010), no. 28, 8033-8041.
84. B.G. Yong Joo Kim, Song Yi Han, Myung Hak Jung, Ashok Kumar Chakraborty, and C.L. Taegyung Ko, and Wan In Lee, Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst, J. Phys. Chem. C 113 (2009), 19179-19184.
85. Y. Xu, W. Xu, F. Huang and Q. Wei, Preparation and photocatalytic activity of TiO2-deposited fabrics, International Journal of Photoenergy 2012 (2012), 1-5.
86. K.Y.-Z. Y. Leprince-Wang, Study of the growth morphology of TiO2 thin films by AFM and TEM, Surface and Coatings Technology 140 (2001), 155-160.
87. T.T.a.Y.I. Yoshimitsu Okazaki, Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films, Materials Transactions, JIM 38 (1997), no. 1, 70-84.
88. X. Zhang, H. Tian, X. Wang, G. Xue, Z. Tian, J. Zhang, S. Yuan, T. Yu and Z. Zou, The role of oxygen vacancy-Ti3+ states on TiO2 nanotubes' surface in dye-sensitized solar cells, Materials Letters 100 (2013), 51-53.
89. D.r. G. HopfengSirtnera, I. RademacheF, G. Wedler, and G.W.S. E.Humsb, Xps studies of oxidic model catalysts: Internal standards and oxidation numbers, Journal of Electron Spectroscopy and Related Phenomena 63 (1993), 91-116.
90. C.S. Chua, O.K. Tan, M.S. Tse and X. Ding, Photocatalytic activity of tin-doped TiO2 film deposited via aerosol assisted chemical vapor deposition, Thin Solid Films (2013), 1-5.
91. S.B. Atla, C.-C. Chen, C.-Y. Chen, P.-Y. Lin, W. Pan, K.-C. Cheng, Y.M. Huang, Y.-F. Chang and J.-S. Jean, Visible light response of Ag+/TiO2–Ti2O3 prepared by photodeposition under foam fractionation, Journal of Photochemistry and Photobiology A: Chemistry 236 (2012), 1-8.
92. J.Riga,J.Verbist, S.K. Sen, 2a and 2p x-ray photoelectron spectra of Ti4+ ion in TiO2, Chemical physics letters 39 (1976), no. 3, 560-564.
93. A. Berkó, A.M. Kiss, M. Švec, F. Šutara and V. Cháb, Ar+ assisted carbidization of TiO2 (110) supported Mo nanoparticles by decomposition of C2H4, Vacuum 82 (2007), no. 2, 125-129.
94. S. Fischer, K.D. Schierbaum , M.C. Torquemada , J.L. de Segovia , E. Romam , and J.A. Martin-Gago, The interaction of Pt with TiO2(110) surfaces: A comparative XPS, UPS, ISS, and ESD study, Surface Science 345 (1996), 261-273.
95. Song-Zhe Chen, Peng-Yi Zhang, Wan-P.eng Zhu, Le Chen and Sheng-Ming Xu, Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses, Applied Surface Science 252 (2006), no. 20, 7532-7538.
96. J. Zhang, M. Zhang, Z. Jin, J. Wang and Z. Zhang, Study of high-temperature hydrogen reduced Pt0/TiO2 by X-ray photoelectron spectroscopy combined with argon ion sputtering—diffusion-encapsulation effect in relation to strong metal–support interaction, Applied Surface Science 258 (2012), no. 8, 3991-3999.
97. M. Scrocco, X-ray photoelectron spectra of Ti4+ in TiO2 evidence of band structure, Chemical physics letters 61 (1979), no. 3, 453-456.
98. A. S. Lim, A. Atrens, ESCA studies of nitrogen-containing stainless steels, Appl. Phys. A 51 (1990), 411-418.
99. Fengying Guo, XiaominWu, Guijuan Ji, Jijing Xu, Lianchun Zou and Shucai Gan, Synthesis and properties investigation of non-equivalent substituted w-type hexaferrite, Journal of Superconductivity and Novel Magnetism (2013).
100. 汪建民, 材料分析, 中國材料科學學會 (2009), 366.
101. T.K. S. Suzukil, M. Saito, H. Inoue, Y. Waseda, and E.M.a.M. Oku, Xps/gixs study of thin oxide films formed on the Fe-40%Cr alloy with trace of manganese, Saipte Materialie 36 (1997), no. 8, 841-845.
102. C.D.W.-J.F.M.-L.E.D.-W.M. RIGGS, Handbook of x-ray photoelectron spectroscopy., Perking-Elmer Corporation, Physical Electronics Division (end of book).
103. D.B.-M.P. SEAH, Practical surface analysis., John WILLEY & SONS. 1. second edition (1993).
104. D. BRION, Etude par spectroscopie de photoélectrons de la dégradation superficielle de FeS2, CuFes2, ZnS et pbs à l'air et dans l'eau., Applications of Surface Science 5 (1980), 133-152.
105. C.M.-P.D.D.-R.B.-R. ERRE, Spatial distribution of iron and sulphure species on the surface of pyrite., Applied Surface Science 68 (1993), 147-158.
106. F. Meng, X. Song and Z. Sun, Photocatalytic activity of TiO2 thin films deposited by RF magnetron sputtering, Vacuum 83 (2009), no. 9, 1147-1151.
107. C. Yang, H. Fan, Y. Xi, J. Chen and Z. Li, Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation, Applied Surface Science 254 (2008), no. 9, 2685-2689.
108. 黃文宏, 低溫成長非晶相Zn1-x-yAlxSnyO薄膜及物之研究, 國立中山大學物理學系研究所碩士論文 (2010).
109. 蔡宗典, 超薄ito 透明導電膜應用在觸控面板之研究, 國 立 中 央 大 學光 電 科 學 研 究 所碩 士 論 文超薄ITO 透明導電膜應用在觸控面板之研究.
110. I.C.C. Myung Soon Lee, and Yeong Il Kim, Photoelectrochemical studies of nanocrystalline TiO2 film electrodes, Bulletin of the Korean Chemical Society 24 (2003), 1155-1162.
111. 林文彬, 量子點結構與光譜性質關聯之探討, 國立中山大學材料科學研究所碩士論文 (2005).
112. E.L. Miller, D. Paluselli, B. Marsen and R.E. Rocheleau, Low-temperature reactively sputtered iron oxide for thin film devices, Thin Solid Films 466 (2004), no. 1-2, 307-313.
113. D. Bao, X. Yao, N. Wakiya, K. Shinozaki and N. Mizutani, Band-gap energies of sol-gel-derived srtio[sub 3] thin films, Applied Physics Letters 79 (2001), no. 23, 3767-3769.
114. K.-J. Noh, H.-J. Oh, B.-R. Kim, S.-C. Jung, W. Kang and S.-J. Kim, Photoelectrochemical properties of Fe2O3 supported on TiO2-based thin films converted from self-assembled hydrogen titanate nanotube powders, Journal of Nanomaterials 2012 (2012), 1-6.
115. T. Ohmori, H. Takahashi, H. Mametsuka and E. Suzuki, Photocatalytic oxygen evolution on α-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent, Physical Chemistry Chemical Physics 2 (2000), no. 15, 3519-3522.
116. B.K. Sarma, A.R. Pal, H. Bailung and J. Chutia, A hybrid heterojunction with reverse rectifying characteristics fabricated by magnetron sputtered tioxand plasma polymerized aniline structure, Journal of Physics D: Applied Physics 45 (2012), no. 27, 275401.
117. H.K.a.M. Kajimura, Sol-gel preparation and photoelectrochemical properties of Fe2TiO5 thin films, Journal of Sol-Gel Science and Technology 22 (2001), 125-132.
118. T. Rojviroon, A. Laobuthee and S. Sirivithayapakorn, Photocatalytic activity of toluene under uv-led light with TiO2 thin films, International Journal of Photoenergy 2012 (2012), 1-8.
119. J. Zhang, X. Chen, Y. Shen, Y. Li, Z. Hu and J. Chu, Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films, Physical chemistry chemical physics : PCCP 13 (2011), no. 28, 13096-13105.
120. I.S. Marco Rolandi, Hongjie Dai, and Jean M. J.Fre´chet, Dendrimer monolayers as negative andpositive tone resists for scanning probe lithography, American Chemical Society (2004).
121. R. Mori, M. Takahashi and T. Yoko, Photoelectrochemical and photocatalytic properties of multilayered TiO2 thin films with a spinodal phase separation structure prepared by a sol-gel process, Journal of Materials Research 20 (2011), no. 01, 121-127.
122. M. Dhayal, J. Jun, H.B. Gu and K. Hee Park, Surface chemistry and optical property of TiO2 thin films treated by low-pressure plasma, Journal of Solid State Chemistry 180 (2007), no. 10, 2696-2701.
123. X.Z. Jiaguo Yu, Qingnan Zhao, Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method, Materials Chemistry and Physics 69 (2001), 25-29.
124. L.-B. Xiong, J.-L. Li, B. Yang and Y. Yu, Ti3+ in the surface of titanium dioxide: Generation, properties and photocatalytic application, Journal of Nanomaterials 2012 (2012), 1-13.
125. F.L. Souza, K.P. Lopes, E. Longo and E.R. Leite, The influence of the film thickness of nanostructured alpha-Fe2O3 on water photooxidation, Physical chemistry chemical physics : PCCP 11 (2009), no. 8, 1215-1219.
126. S.H. Tamboli, G. Rahman and O.-S. Joo, Influence of potential, deposition time and annealing temperature on photoelectrochemical properties of electrodeposited iron oxide thin films, Journal of Alloys and Compounds 520 (2012), 232-237.
127. R.S. Sonawane, B.B. Kale and M.K. Dongare, Preparation and photo-catalytic activity of FeTiO2 thin films prepared by sol–gel dip coating, Materials Chemistry and Physics 85 (2004), no. 1, 52-57.
128. Y. Li, J. Li, M. Ma, Y. Ouyang and W. Yan, Preparation of TiO2/activated carbon with Fe ions doping photocatalyst and its application to photocatalytic degradation of reactive brilliant red K2G, Science in China Series B: Chemistry 52 (2009), no. 8, 1113-1119.
129. A.S.M.A.H. M. M. Hasan, R. Saidur, and H. H. Masjuki, Effects of annealing treatment on optical properties of anatase TiO2 thin films, International Journal of Chemical and Biological Engineering 1 (2008), no. 2, 92-96.
130. Mohammed Jasim Uddin, Md Mohibul Alam, Md Akhtarul Islam, Sharmin Rahman Snigda, Sreejon Das, Mohammed Mastabur Rahman, Md Nizam Uddin, Cindy A Morris, Richard D Gonzalez, Ulrike Diebold, Tarik J Dickens and Okenwa I Okoli, Tailoring the photocatalytic reaction rate of a nanostructured TiO2 matrix using additional gas phase oxygen, International Nano Letters 3 (2013), no. 1, 1-10.
131. S. Šegota, L. Ćurković, D. Ljubas, V. Svetličić, I.F. Houra and N. Tomašić, Synthesis, characterization and photocatalytic properties of sol–gel TiO2 films, Ceramics International 37 (2011), no. 4, 1153-1160.
132. P. Basnet, G.K. Larsen, R.P. Jadeja, Y.C. Hung and Y. Zhao, Alpha-Fe2O3 nanocolumns and nanorods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications, ACS applied materials & interfaces 5 (2013), no. 6, 2085-2095.
133. A. Qurashi, Z. Zhong and M.W. Alam, Synthesis and photocatalytic properties of α-Fe2O3 nanoellipsoids, Solid State Sciences 12 (2010), no. 8, 1516-1519.
134. Y. Shaogui, Q. Xie, L. Xinyong, L. Yazi, C. shuo and C. Guohua, Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation, Physical Chemistry Chemical Physics 6 (2004), no. 3, 659-664.
135. X. Zhang and L. Lei, Preparation of photocatalytic Fe2O3–TiO2 coatings in one step by metal organic chemical vapor deposition, Applied Surface Science 254 (2008), no. 8, 2406-2412.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw