進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1208202017203000
論文名稱(中文) Rho kinase於動脈血栓中血小板活化之角色探討及其對血小板單核球集合體之影響
論文名稱(英文) The role of Rho kinase in activated platelets and pathogenesis of platelet-monocyte aggregates in atherothrombosis
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 108
學期 2
出版年 109
研究生(中文) 許玲維
研究生(英文) Ling-Wei Hsu
學號 S58024062
學位類別 博士
語文別 英文
論文頁數 93頁
口試委員 指導教授-劉秉彥
召集委員-李貽恆
口試委員-王育民
口試委員-楊倍昌
口試委員-褚柏顯
口試委員-楊鎧鍵
中文關鍵字 動脈血栓  CCR2  MIF  P-selectin  ROCK  SNP 
英文關鍵字 arterial thrombosis  CCR2  MIF  P-selectin  ROCK  SNP 
學科別分類
中文摘要 動脈血栓形成起因為粥狀動脈硬化斑塊損傷時會釋放血栓前物質和促進血小板聚集。血小板是參與血栓形成的主要角色,並與血管中的免疫細胞共同作用。在本篇研究中,我們研究在動脈血栓中活化後的血小板如何與單核細胞相互作用。我們藉由經皮冠狀動脈介入治療收集患者的冠狀動脈血液,並測量血小板活性。急性冠心症患者冠狀動脈中的血小板具有較高的偽足和活性。另外核醣體基因圖譜表明冠狀動脈中的血小板有大量的Rho GTPases及其下游表現因子。RhoA活化下游ROCK,並且ROCK會增加冠狀動脈血小板中的表面P-selectin蛋白。在體外實驗和急性冠心症患者的血斑塊中觀察到血小板和單核細胞之間的聚集。此外,我們發現活化後的血小板促進了單核細胞的遷移,而此ROCK抑制劑可以抑制此遷移。凝血酶誘導的血小板表面P-selectin蛋白和MIF蛋白分泌增加,並且透過ROCK訊號傳遞路徑增加CCR2的表現。CCR2在單核細胞-血小板聚集物中表現高於沒有血小板作用的單核細胞。最後,我們使用亞洲篩查陣列微珠芯片(Asian Screening Array BeadChip),辨別與心血管事件有關的SNP。值得注意的是,患者基因帶有RHOA SNP rs11706370主要等位基因在心血管事件中的風險較高。在動脈血栓中,血小板透過ROCK重塑細胞骨架和P-selectin蛋白表現,並且聚集單核細胞並且與CCR2高表現的單核細胞協同誘發血栓炎症。
英文摘要 Arterial thrombosis is initiated by atherosclerotic plaque damage, prothrombotic material release and platelet aggregation. Platelets are primary mediators involved in thrombosis and cooperate with vascular and immune cells. Herein, we investigated how activated platelets interacted with monocytes in atherothrombosis. We collected patients’ blood from coronary arteries during percutaneous coronary intervention (PCI), and measured platelet activity. Platelets from coronary arteries had higher pseudopodia expression and activity in patients with acute coronary syndrome (ACS). Ribosome profiling of platelets from coronary blood mapped a vigorous upregulation of Rho GTPases and its downstream effectors. RhoA activates downstream Rho associated coiled-coil containing protein kinase (ROCK), and ROCK increased surface P-selectin in coronary blood platelets. The interaction between platelets and monocytes was observed in vitro, and monocyte-platelet aggregates (MPAs) was found in ruptured coronary plaques of ACS. Further we found that activated platelets promoted monocyte transmigration, which could be suppressed in the presence of ROCK inhibitor. The increased surface P-selectin and macrophage migration inhibitory factor (MIF) secretion on thrombin-induced platelets interacted with monocytes to upregulate monocyte chemokine receptor 2 (CCR2) expression via the ROCK pathway. The expression of CCR2 was higher in MPAs than that of monocytes without platelets. Finally, using the Asian Screening Array BeadChip, we identified patients containing homozygous major alleles of the RHOA SNP rs11706370 represented with higher risks in cardiovascular events. Through ROCK activated cytoskeleton remodeling and P-selectin expression, platelets recruited and interacted synergistically with high CCR2 expressing monocytes to induce thrombo-inflammation in atherothrombosis.
論文目次 Abstract I
Chinese abstract II
Acknowledgement III
Contents IV
Figure list VIII
Table list XI
Abbreviations XII
Chapter 1. Introduction 1
1.1 Coronary artery disease and therapy 1
1.2 Platelets in atherothrombosis 2
1.3 GPCR in platelets 5
1.4 The translatome of platelets activation 7
1.5 Monocytes-platelets aggregates in atherothrombosis 8
Chapter 2. Objective and Specific Aims 10
Chapter 3. Materials and Methods 12
3.1 Clinic study design 12
3.1.1 Patients’ enrollment 12
3.1.2 Study protocol 13
3.2 Platelets isolation 13
3.2.1 Patients’ and heathy donors’ platelets 13
3.2.2 Washed platelets for ex vivo 14
3.3 Platelets activity analysis 14
3.4 Translatome analysis 14
3.4.1 RNA sequencing libraries. 14
3.4.2 Bioinformatic analysis of ribosome profiling data. 15
3.4.3 Gene ontology (GO) analysis 16
3.5 Immunofluorescence (IF) staining 16
3.5.1 Morphology observation of platelets 16
3.5.2 Platelets-monocytes/macrophages aggregates in coronary thrombus 17
3.5.3 Immunofluorescence staining of platelets-THP-1 aggregates 17
3.6 RhoA pull-down activation analysis 18
3.7 Western blotting 18
3.8 Clot formation assay 19
3.9 Fluorescence-activated cell sorting (FACS) analysis 19
3.9.1 Measurement of P-selectin and CCR2 level under thrombin-induced platelets and monocytes 19
3.9.2 Measurement of P-selectin and CCR2 level from patients’ platelets and monocytes 20
3.10 Soluble P-selectin and MIF level from coronary culprit cite of CAD patients 20
3.11 Cell culture 21
3.12 Transmigration assays 21
3.13 SNP Genotyping Assays 21
3.13.1 Sample preparation 21
3.13.2 DNA extraction 22
3.13.3 Human Genome-Wide Arrays 22
3.13.4 TaqMan qPCR Assay 23
3.14 Statistical analysis 23
Chapter 4. Results 25
4.1 Patient Characteristics 25
4.2 Platelets activity was higher within the coronary blood circulation than the peripheral blood among ACS population 25
4.3 The Rho family was enriched in platelets from coronary blood of ACS. 26
4.4 The RhoA–ROCK signaling pathway is activated in platelets from coronary blood of ACS. 27
4.5 P-selectin on platelet surface: the interaction with ROCKs in thrombin-induced platelet aggregation 28
4.6 The interaction with ROCKs in thrombin-induced platelets and monocytes 29
4.6.1 Platelets drove monocyte migration and promoted CCR2 expression of monocytes 29
4.6.2 Platelet-cultured medium drove monocyte migration and promoted CCR2 expression of monocytes 30
4.6.3 Compared THP-1 counts, CCR2 and P-selectin surface expression of THP-1 interacted with platelets or platelet-cultured medium 31
4.6.4 Low concentration of ROCK inhibitor did not reduce the transmigration of THP-1 cells 31
4.6.5 Block P-selectin in cultured medium reduce the transmigration of THP-1 cells 32
4.6.6 Inflammatory cytokine, IL6, TNFα, ICAM1 increased in MPAs 32
4.6.7 The correlation of platelets and monocytes via ROCKs in CAD patients 33
4.7 Association of SNPs with RhoA-ROCK-P-selectin pathway and patients’ cardiovascular events 33
4.8 MIF, a chemokine of platelets: the interaction with ROCKs in thrombin-induced platelet aggregation 34
Chapter 5. Discussion 36
5.1 WBC counts and smoking of patients linked to the thrombo-inflammation 36
5.2 Platelet activity between coronary and peripheral blood 36
5.3 GPCR and Rho GTPase activated platelets 38
5.4 ROCK1 and ROCK2 have different roles in platelets 39
5.5 Platelet P-selectin played a dominant role in thrombo-inflammation 40
5.6 Platelet MIF played a dominant role in thrombo-inflammation 41
5.7 The interactions of MPAs increased in athero-thrombosis 42
5.8 CCR2 on monocytes leads to inflammation 43
5.9 SNPs are related CVD 43
Chapter 6. Conclusion 45
References 46
Figures 56
Tables 87
參考文獻 1. Mensah GA, Wei GS, Sorlie PD, et al. Decline in Cardiovascular Mortality: Possible Causes and Implications. Circ Res 2017; 120(2): 366-80.
2. Lee CH, Fang CC, Tsai LM, et al. Patterns of Acute Myocardial Infarction in Taiwan from 2009 to 2015. Am J Cardiol 2018; 122(12): 1996-2004.
3. Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov 2010; 9(2): 154-69.
4. Siller-Matula JM, Trenk D, Schror K, et al. Response variability to P2Y12 receptor inhibitors: expectations and reality. JACC Cardiovasc Interv 2013; 6(11): 1111-28.
5. Tantry US, Gesheff M, Liu F, et al. Resistance to antiplatelet drugs: what progress has been made? Expert Opin Pharmacother 2014; 15(17): 2553-64.
6. Eikelboom JW, Hirsh J, Spencer FA, et al. Antiplatelet drugs: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141(2 Suppl): e89S-119S.
7. Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8(11): 1227-34.
8. Lindemann S, Kramer B, Seizer P, et al. Platelets, inflammation and atherosclerosis. Journal of thrombosis and haemostasis : JTH 2007; 5 Suppl 1: 203-11.
9. McGregor L, Martin J, McGregor JL. Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis. Frontiers in bioscience : a journal and virtual library 2006; 11: 830-7.
10. Rivera J, Lozano ML, Navarro-Nunez L, et al. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 2009; 94(5): 700-11.
11. Springer TA, Dustin ML. Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol 2012; 24(1): 107-15.
12. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007; 357(24): 2482-94.
13. Aslan JE, McCarty OJ. Rho GTPases in platelet function. J Thromb Haemost 2013; 11(1): 35-46.
14. Goggs R, Williams CM, Mellor H, et al. Platelet Rho GTPases-a focus on novel players, roles and relationships. The Biochemical journal 2015; 466(3): 431-42.
15. Chang SH, Hla T. Post-transcriptional gene regulation by HuR and microRNAs in angiogenesis. Current opinion in hematology 2014; 21(3): 235-40.
16. Aparicio LA, Abella V, Valladares M, et al. Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition. Cellular and molecular life sciences : CMLS 2013; 70(23): 4463-77.
17. Lim C, Allada R. Emerging roles for post-transcriptional regulation in circadian clocks. Nature neuroscience 2013; 16(11): 1544-50.
18. Gygi SP, Rochon Y, Franza BR, et al. Correlation between protein and mRNA abundance in yeast. Molecular and cellular biology 1999; 19(3): 1720-30.
19. Steen H, Pandey A. Proteomics goes quantitative: measuring protein abundance. Trends in biotechnology 2002; 20(9): 361-4.
20. Maier T, Guell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS letters 2009; 583(24): 3966-73.
21. Lundberg E, Fagerberg L, Klevebring D, et al. Defining the transcriptome and proteome in three functionally different human cell lines. Molecular systems biology 2010; 6: 450.
22. Van Der Kelen K, Beyaert R, Inze D, et al. Translational control of eukaryotic gene expression. Critical reviews in biochemistry and molecular biology 2009; 44(4): 143-68.
23. Blagden SP, Willis AE. The biological and therapeutic relevance of mRNA translation in cancer. Nature reviews Clinical oncology 2011; 8(5): 280-91.
24. Ruggero D. Translational control in cancer etiology. Cold Spring Harbor perspectives in biology 2013; 5(2).
25. Ingolia NT, Ghaemmaghami S, Newman JR, et al. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009; 324(5924): 218-23.
26. Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 2011; 147(4): 789-802.
27. Ingolia NT. Ribosome profiling: new views of translation, from single codons to genome scale. Nature reviews Genetics 2014; 15(3): 205-13.
28. Gonzalez C, Sims JS, Hornstein N, et al. Ribosome profiling reveals a cell-type-specific translational landscape in brain tumors. The Journal of neuroscience : the official journal of the Society for Neuroscience 2014; 34(33): 10924-36.
29. Modelska A, Quattrone A, Re A. Molecular portraits: the evolution of the concept of transcriptome-based cancer signatures. Briefings in bioinformatics 2015; 16(6): 1000-7.
30. Qiu Y, Brown AC, Myers DR, et al. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci U S A 2014; 111(40): 14430-5.
31. Tomaiuolo M, Stalker TJ, Welsh JD, et al. A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood 2014; 124(11): 1816-23.
32. Furman MI, Barnard MR, Krueger LA, et al. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol 2001; 38(4): 1002-6.
33. Shih L, Kaplan D, Kraiss LW, et al. Platelet-Monocyte Aggregates and C-Reactive Protein are Associated with VTE in Older Surgical Patients. Sci Rep 2016; 6: 27478.
34. Allen N, Barrett TJ, Guo Y, et al. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis 2019; 282: 11-8.
35. Gawaz M, Stellos K, Langer HF. Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells. J Thromb Haemost 2008; 6(2): 235-42.
36. Fuster V, Moreno PR, Fayad ZA, et al. Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 2005; 46(6): 937-54.
37. Nishiguchi T, Tanaka A, Taruya A, et al. Local Matrix Metalloproteinase 9 Level Determines Early Clinical Presentation of ST-Segment-Elevation Myocardial Infarction. Arterioscler Thromb Vasc Biol 2016; 36(12): 2460-7.
38. Cazenave JP, Ohlmann P, Cassel D, et al. Preparation of washed platelet suspensions from human and rodent blood. Methods Mol Biol 2004; 272: 13-28.
39. Wurtz M, Hvas AM, Christensen KH, et al. Rapid evaluation of platelet function using the Multiplate(R) Analyzer. Platelets 2014; 25(8): 628-33.
40. Ingolia NT, Brar GA, Rouskin S, et al. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 2012; 7(8): 1534-50.
41. Muruganujan A, Ebert D, Mi H, et al. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 2018; 47(D1): D419-D26.
42. Peters CG, Michelson AD, Flaumenhaft R. Granule exocytosis is required for platelet spreading: differential sorting of alpha-granules expressing VAMP-7. Blood 2012; 120(1): 199-206.
43. Lai HY, Hsu LW, Tsai HH, et al. CCAAT/enhancer-binding protein delta promotes intracellular lipid accumulation in M1 macrophages of vascular lesions. Cardiovasc Res 2017; 113(11): 1376-88.
44. Chen PW, Hsu LW, Chang HY, et al. Elevated Platelet Galectin-3 and Rho-Associated Protein Kinase Activity Are Associated with Hemodialysis Arteriovenous Shunt Dysfunction among Subjects with Diabetes Mellitus. Biomed Res Int 2019; 2019: 8952414.
45. Flevaris P, Li Z, Zhang G, et al. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 2009; 113(4): 893-901.
46. Selvaraj SK, Giri RK, Perelman N, et al. Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood 2003; 102(4): 1515-24.
47. Rowley JW, Weyrich AS. Ribosomes in platelets protect the messenger. Blood 2017; 129(17): 2343-5.
48. Michelson AD, Barnard MR, Krueger LA, et al. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 2001; 104(13): 1533-7.
49. Yokoyama S, Ikeda H, Haramaki N, et al. Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet-leukocyte aggregates. J Am Coll Cardiol 2005; 45(8): 1280-6.
50. Sarma J, Laan CA, Alam S, et al. Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation 2002; 105(18): 2166-71.
51. Loguinova M, Pinegina N, Kogan V, et al. Monocytes of Different Subsets in Complexes with Platelets in Patients with Myocardial Infarction. Thromb Haemost 2018; 118(11): 1969-81.
52. Koupenova M, Clancy L, Corkrey HA, et al. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ Res 2018; 122(2): 337-51.
53. Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nature reviews Cardiology 2010; 7(2): 77-86.
54. Panicker SR, Mehta-D'souza P, Zhang N, et al. Circulating soluble P-selectin must dimerize to promote inflammation and coagulation in mice. Blood 2017; 130(2): 181-91.
55. Wirtz TH, Tillmann S, Strussmann T, et al. Platelet-derived MIF: a novel platelet chemokine with distinct recruitment properties. Atherosclerosis 2015; 239(1): 1-10.
56. Muller, II, Muller KA, Schonleber H, et al. Macrophage migration inhibitory factor is enhanced in acute coronary syndromes and is associated with the inflammatory response. PLoS One 2012; 7(6): e38376.
57. Barron HV, Cannon CP, Murphy SA, et al. Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction: a thrombolysis in myocardial infarction 10 substudy. Circulation 2000; 102(19): 2329-34.
58. Barua RS, Ambrose JA. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler Thromb Vasc Biol 2013; 33(7): 1460-7.
59. Yurdagul A, Jr., Finney AC, Woolard MD, et al. The arterial microenvironment: the where and why of atherosclerosis. Biochem J 2016; 473(10): 1281-95.
60. Massberg S, Brand K, Gruner S, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196(7): 887-96.
61. Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol 2003; 23(12): 2131-7.
62. Jaumdally RJ, Varma C, Blann AD, et al. Platelet activation in coronary artery disease: intracardiac vs peripheral venous levels and the effects of angioplasty. Chest 2007; 132(5): 1532-9.
63. Hu YF, Lu TM, Wu CH, et al. Differences in high on-treatment platelet reactivity between intra-coronary and peripheral blood after dual anti-platelet agents in patients with coronary artery disease. Thromb Haemost 2013; 110(1): 124-30.
64. Mills EW, Green R, Ingolia NT. Slowed decay of mRNAs enhances platelet specific translation. Blood 2017; 129(17): e38-e48.
65. Weyrich AS, Denis MM, Schwertz H, et al. mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets. Blood 2007; 109(5): 1975-83.
66. Shen B, Delaney MK, Du X. Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr Opin Cell Biol 2012; 24(5): 600-6.
67. Gong H, Shen B, Flevaris P, et al. G protein subunit Galpha13 binds to integrin alphaIIbbeta3 and mediates integrin "outside-in" signaling. Science 2010; 327(5963): 340-3.
68. Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006; 99(12): 1293-304.
69. Suzuki Y, Yamamoto M, Wada H, et al. Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase. Blood 1999; 93(10): 3408-17.
70. Watanabe Y, Ito M, Kataoka Y, et al. Protein kinase C-catalyzed phosphorylation of an inhibitory phosphoprotein of myosin phosphatase is involved in human platelet secretion. Blood 2001; 97(12): 3798-805.
71. Andrews RK, Gardiner EE. Inside platelets. Blood 2012; 119(4): 907-9.
72. Huveneers S, Danen EH. Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci 2009; 122(Pt 8): 1059-69.
73. Pleines I, Dutting S, Cherpokova D, et al. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42. Blood 2013; 122(18): 3178-87.
74. Pandey D, Goyal P, Bamburg JR, et al. Regulation of LIM-kinase 1 and cofilin in thrombin-stimulated platelets. Blood 2006; 107(2): 575-83.
75. Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 2014; 5: e29846.
76. Sladojevic N, Oh GT, Kim HH, et al. Decreased thromboembolic stroke but not atherosclerosis or vascular remodelling in mice with ROCK2-deficient platelets. Cardiovasc Res 2017; 113(11): 1307-17.
77. Dasgupta SK, Le A, Haudek SB, et al. Rho associated coiled-coil kinase-1 regulates collagen-induced phosphatidylserine exposure in platelets. PLoS One 2013; 8(12): e84649.
78. Rikitake Y, Kim HH, Huang Z, et al. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 2005; 36(10): 2251-7.
79. Gambaryan S, Kobsar A, Rukoyatkina N, et al. Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. J Biol Chem 2010; 285(24): 18352-63.
80. Morrell CN, Aggrey AA, Chapman LM, et al. Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123(18): 2759-67.
81. Burger PC, Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development. Blood 2003; 101(7): 2661-6.
82. Furie B, Furie BC, Flaumenhaft R. A journey with platelet P-selectin: the molecular basis of granule secretion, signalling and cell adhesion. Thromb Haemost 2001; 86(1): 214-21.
83. Ridker PM, Buring JE, Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation 2001; 103(4): 491-5.
84. Dong ZM, Brown AA, Wagner DD. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 2000; 101(19): 2290-5.
85. Woollard KJ, Lumsden NG, Andrews KL, et al. Raised soluble P-selectin moderately accelerates atherosclerotic plaque progression. PLoS One 2014; 9(5): e97422.
86. Bernardo A, Ball C, Nolasco L, et al. Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 2005; 3(3): 562-70.
87. Kaplan ZS, Zarpellon A, Alwis I, et al. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 2015; 6: 7835.
88. Woollard KJ, Suhartoyo A, Harris EE, et al. Pathophysiological levels of soluble P-selectin mediate adhesion of leukocytes to the endothelium through Mac-1 activation. Circ Res 2008; 103(10): 1128-38.
89. Wang HB, Wang JT, Zhang L, et al. P-selectin primes leukocyte integrin activation during inflammation. Nat Immunol 2007; 8(8): 882-92.
90. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003; 3(10): 791-800.
91. Nishihira J. Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. J Interferon Cytokine Res 2000; 20(9): 751-62.
92. Strussmann T, Tillmann S, Wirtz T, et al. Platelets are a previously unrecognised source of MIF. Thromb Haemost 2013; 110(5): 1004-13.
93. Hilgendorf I, Swirski FK, Robbins CS. Monocyte fate in atherosclerosis. Arterioscler Thromb Vasc Biol 2015; 35(2): 272-9.
94. Tabas I, Lichtman AH. Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity 2017; 47(4): 621-34.
95. Shantsila E, Lip GY. The role of monocytes in thrombotic disorders. Insights from tissue factor, monocyte-platelet aggregates and novel mechanisms. Thromb Haemost 2009; 102(5): 916-24.
96. Peshkova AD, Le Minh G, Tutwiler V, et al. Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression. Sci Rep 2017; 7(1): 5149.
97. Kashiwagi M, Imanishi T, Tsujioka H, et al. Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis 2010; 212(1): 171-6.
98. Mosig S, Rennert K, Krause S, et al. Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. FASEB J 2009; 23(3): 866-74.
99. Schober A, Zernecke A, Liehn EA, et al. Crucial role of the CCL2/CCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocyte recruitment and CCL2 presentation on platelets. Circ Res 2004; 95(11): 1125-33.
100. Jensen MK, Havndrup O, Christiansen M, et al. Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12-year follow-up study of clinical screening and predictive genetic testing. Circulation 2013; 127(1): 48-54.
101. Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 2008; 117(22): 2893-901.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw