進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1208202014160500
論文名稱(中文) 應用CPT模型評估土壤液化引致沉陷及側向擴展
論文名稱(英文) A Study of CPT-based Methods for Evaluating Liquefaction-induced Settlements and Lateral Spreads
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 戴玉琳
研究生(英文) Yu-Lin Dai
學號 N66074271
學位類別 碩士
語文別 中文
論文頁數 167頁
口試委員 指導教授-李德河
共同指導教授-古志生
口試委員-廖志中
口試委員-陳昭旭
口試委員-林志平
中文關鍵字 土壤液化  沉陷  側向擴展  液化潛能指數  液化嚴重程度指數 
英文關鍵字 Soil Liquefaction  Settlements  Lateral Spreads  Liquefaction Potential Index  Liquefaction Severity Number 
學科別分類
中文摘要 土壤液化引致之沉陷及側向擴展會造成建築物、橋梁及地下管線的嚴重損壞,而在規模較大的地震中可觀察到由液化引致沉陷及側向擴展造成的重大損失,因此,若能對具有液化風險之地區進行液化易損度評估,並良好地預測液化引致地表變形量,事先採取預防措施,除了能防範液化災害,也能降低土壤液化所帶來的負面效果。
本研究主要利用各國液化歷史案例及圓錐貫入試驗(CPT)資料,建立評估液化引致沉陷及側向擴展之經驗模型。首先以蒐集的案例探討目前經驗模型之適用性與不足,找出現地位移量與預測位移量之關係,利用均方根誤差(RSME)比較出預測結果最佳的模型。加入三個液化易損度評估指數:液化潛能指數(LPI)、液化嚴重程度指數(LSN)以及考量地形參數之修正液化潛能指數(LPI*),與現地位移量進行迴歸分析,結果發現不論沉陷或側向擴展案例,皆有良好的擬合情況,其中又以LPI*為最佳。LPI*計算概念簡單、方便,可作為液化引致現地位移的評估方法。此外,改變積分深度為自由面+2米評估側向擴展,可大幅縮減自由面公式高估的位移量,預測結果比現有地表變形模型更佳。
本研究延伸探討地表變形案例之地層參數分佈特性,可對土壤液化引致地表變形的影響因子有基本認知,地層參數使用CPT試驗之參數,如錐尖阻抗(qc)、錐身摩擦(fs)及動態孔隙水壓(u2)等。本研究統整出沉陷案例液化層各參數的分佈情況為錐尖阻抗(qc) 2~4.5 MPa,錐身摩擦(fs) 20~45 KPa,孔隙水壓(u2) -50~25 KPa,正規化錐尖阻抗(Qtn) 30~60;側向擴展案例液化層各參數的分佈情況為錐尖阻抗(qc) 2~7 MPa,錐身摩擦(fs) 10~60 KPa,孔隙水壓(u2) -20~60 KPa,正規化錐尖阻抗(Qtn) 30~90。
英文摘要 This study mainly uses historical cases of liquefaction in various countries and cone penetration test (CPT) data to establish an empirical model for evaluating liquefaction-induced ground displacement. Firstly, use the collected cases to discuss the applicability and shortcomings of the current empirical model. Next, find the relationship between the ground displacement and the predicted displacement, and use the root mean square error (RSME) to compare the models and find out the best prediction result. Three liquefaction susceptibility assessment indexes are added: Liquefaction Potential Index(LPI), Liquefaction Severity Number(LSN), and Modified Liquefaction Potential Index(LPI*) that takes into account terrain. Regression analysis is used, and the results show that regardless of the settlements or lateral spreads, all have good fitting conditions with LPI*. The calculation concept of LPI* is simple and convenient, and it can be used as an assessment method of liquefaction-induced displacement. In addition, changing the integral depth to the height of free face plus 2 meters to evaluate the lateral spread can get great prediction results better than the existing surface deformation models. The study also explored the distribution characteristics of the formation parameters of the ground deformation cases. The formation parameters use the CPT test parameters. In this study, the distribution of parameters of the liquefied layer in the settlements cases is cone resistance(qc) 2~4.5 MPa, sleeve friction resistance(fs) 20~45 KPa, pore water pressure(u2) -50~25 KPa, normalized cone resistance(Qtn) 30~60; the distribution of parameters of the liquefied layer in the lateral spreads cases is cone resistance (qc) 2~7 MPa, sleeve friction resistance (fs) 10~60 KPa, pore water pressure(u2)-20~60 KPa, normalized cone resistance(Qtn) 30~90.
論文目次 摘要 I
Extended Abstract II
誌謝 XI
目錄 XIII
圖目錄 XVI
表目錄 XX
符號表 XXII
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 2
1.3 研究流程 4
1.4 論文大綱 5
第二章 文獻回顧 6
2.1 土壤液化 6
2.1.1 液化介紹 6
2.1.2 液化現象 8
2.1.3 液化破壞類型 9
2.2 土壤液化評估法 12
2.2.1 Seed et al.(1985)簡易評估法 13
2.2.2 各種試驗方式評估法之比較 16
2.2.3 Robertson(2009)CPT液化評估法 18
2.2.4 Ku and Juang(2012)CPT液化評估法 21
2.2.5 Boulanger and Idriss(2016)CPT液化評估法 25
2.3 液化易損度(Susceptibility)評估 30
2.3.1 液化引致之沉陷 30
2.3.2 液化引致之側向位移 35
2.3.3 液化易損度評估指標 41
第三章 研究方法 46
3.1 案例資料庫建置 47
3.1.1 案例介紹 48
3.1.2 資料蒐集方法 52
3.2 地表變形評估模型 54
3.2.1 評估流程 54
3.2.2 參數代號命名原則 64
3.2.3 CPT參數設定 67
3.2.4 模型參數設定 69
3.3 液化層簡化土壤性質特性評估 72
3.3.1 評估流程 72
3.3.2 參數代號命名原則 74
3.3.3 案例篩選 76
第四章 地表變形評估結果 77
4.1 液化層簡化土壤性質特性 77
4.1.1 沉陷與土壤強度參數 77
4.1.2 側向擴展與土壤強度參數 83
4.1.3 小結 88
4.2 沉陷預測結果 89
4.2.1 各沉陷模型預測比較 89
4.2.2 考量建築物影響之沉陷預測 91
4.2.3 小結 93
4.3 側向擴展預測結果 94
4.3.1 積分深度20米內之側向擴展預測 94
4.3.2 考量不同積分深度影響之側向擴展預測 102
4.3.3 小結 108
4.4 液化易損度評估指標探討 110
4.4.1 沉陷與液化易損度指標 110
4.4.2 側向擴展與深度20米內液化易損度指標 115
4.4.3 側向擴展與深度自由面+2米內液化易損度指標 120
4.4.4 小結 125
4.5 預測模型應用成果示範 127
第五章 結論與建議 133
5.1 結論 133
5.2 建議 135
參考文獻 137
附錄A 沉陷理論公式 144
附錄B 側向擴展理論公式 146
附錄C 沉陷案例資料表 148
附錄D 側向擴展案例資料表 152

參考文獻 李德河、吳建宏、蔡百祥(2016),「美濃地震台南震害區之大地環境」,地工技術,第148期,第45-58頁。

林呈、孫洪福(2000),見證921集集大地震:震害成因與因應對策。

林美聆、翁作新、陳銘鴻、王明輝、黃筱卿(2000),「九二一集集大地震後續短期研究-由員林地區液化調查資料進行本土化液化評估方法之初步研究」,國家地震工程研究中心。

翁作新、陳正興、黃俊鴻(2004),「國內土壤受震液化問題之檢討」,地工技術,第100期,第63-78頁。

陳銘鴻、陳景文、李維峰、王志榮、辜炳寰(2002),「簡易液化評估方法之修正與微分區應用」,土壤液化問題之回顧與展望,第31-62頁。

褚炳麟、張益銘、陳冠閔、徐松圻、張錦銘(2000),「921地震霧峰、太平地區液化及下陷調查分析」,地工技術,第77期,第19-28頁。

褚炳麟、徐松圻、謝明志、賴聖耀、蔡佩勳、王益祥、邱振榮(2001),台中縣液化潛能評估。

蔡祁欽、王國隆、許尚逸、楊炫智、張為光、陳家漢、黃郁惟(2016),「美濃地震台南地區土壤液化與地工災害之踏勘調查」,地工技術,第148期,第31-44頁。

盧志杰、許尚逸、黃郁惟、黃俊鴻(2016),「美濃地震液化災損調查及簡易評估」,105年國震中心研究成果報告,第9-12頁。

美國太平洋地震工程研究中心(PEER)網站-土耳其Kocaeli地震案例。https://apps.peer.berkeley.edu/publications/turkey/adapazari/index.html

美國太平洋地震工程研究中心(PEER)網站-台灣集集地震案例。https://apps.peer.berkeley.edu/lifelines/research_projects/3A02/index.html

美國地質調查局(USGS)網站。https://www.usgs.gov/

紐西蘭大地工程資料庫(NZGD)網站。
https://www.nzgd.org.nz/Registration/Login.aspx

全球土壤液化數據開放資料庫(Next- Generation Liquefaction, NGL)網站。https://www.nextgenerationliquefaction.org/

Apostolakis, G., Qu, B., Ecemis, N., & Dogruel, S. (2007). Field reconnaissance of the 2007 Niigata-Chuetsu Oki earthquake. Earthquake Engineering and Engineering Vibration, 6(4), 317-330.

Bartlett, S. F., & Youd, T. L. (1992). Empirical analysis of horizontal ground displacement generated by liquefaction-induced lateral spreads.

Bartlett, S. F., & Youd, T. L. (1995). Empirical Prediction of Liquefaction-Induced Lateral Spread. Journal of Geotechnical Engineering, 121(4), 316-329.

Boulanger, R. W., Mejia, L. H., & Idriss, I. M. (1997). Liquefaction at Moss Landing during Loma Prieta Earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 123(5), 453-467.

Boulanger, R. W. (2003). High Overburden Stress Effects in Liquefaction Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 129(12), 1071-1082. doi: doi:10.1061/(ASCE)1090-0241(2003)129:12(1071)

Boulanger, R. W., & Idriss, I. M. (2004). Evaluating the potential for liquefaction or cyclic failure of silts and clays: Citeseer.

Boulanger, R. W., & Idriss, I. M. (2007). Evaluation of Cyclic Softening in Silts and Clays. Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 641-652.

Boulanger, R., & Idriss, I. (2014). CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM.-14, 1.

Boulanger, R. W., & Idriss, I. M. (2016). CPT-Based Liquefaction Triggering Procedure. Journal of Geotechnical and Geoenvironmental Engineering, 142(2).

Bray, J., Stewart, J., Youd, T., Bardet, J., & Bray, J. (2000). Damage patterns and foundation performance in Adapazari, Kocaeli, Turkey Earthquake of August 17, 1999 Reconnaissance Report. Earthquake Spectra Supplement A to, 16, 163-189.

Bray, J. D., Sancio, R. B., Durgunoglu, T., Onalp, A., Youd, T. L., Stewart, J. P., Karadayilar, T. (2004). Subsurface Characterization at Ground Failure Sites in Adapazari, Turkey. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 673-685.

Cetin, K. O., Youd, T. L., Seed, R. B., Bray, J. D., Stewart, J. P., Durgunoglu, H. T., Yilmaz, M. T. (2004). Liquefaction-induced lateral spreading at Izmit bay during the Kocaeli (Izmit)-Turkey earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 130(12), 1300-1313.

Cetin, K. O., Bilge, H. T., Wu, J., Kammerer, A. M., & Seed, R. B. (2009). Probabilistic Model for the Assessment of Cyclically Induced Reconsolidation (Volumetric) Settlements. Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 387-398.

Chu, D. B., Stewart, J. P., Lee, S., Tsai, J. S., Lin, P. S., Chu, B. L., Wang, M. C. H. (2004). Documentation of soil conditions at liquefaction and non-liquefaction sites from 1999 Chi–Chi (Taiwan) earthquake. Soil Dynamics and Earthquake Engineering, 24(9), 647-657.

Chu, D. B., Stewart, J. P., Youd, T. L., & Chu, B. L. (2006). Liquefaction-Induced Lateral Spreading in Near-Fault Regions during the 1999 Chi-Chi, Taiwan Earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 132(12), 1549-1565.

Cubrinovski, M., Robinson, K., Taylor, M., Hughes, M., & Orense, R. (2012). Lateral spreading and its impacts in urban areas in the 2010–2011 Christchurch earthquakes. New Zealand Journal of Geology and Geophysics, 55(3), 255-269.

Cubrinovski, M., & Robinson, K. (2016). Lateral spreading: Evidence and interpretation from the 2010–2011 Christchurch earthquakes. Soil Dynamics and Earthquake Engineering, 91, 187-201.

Hamada, M., Yasuda, S., Isoyama, R., & Emoto, K. (1986). Study on liquefaction-induced permanent ground displacements and earthquake damage. Doboku Gakkai Ronbunshu(376), 221-229.

Holzer, T. L., Noce, T. E., Bennett, M. J., Tinsley, J. C., & Rosenberg, L. I. (2005). Liquefaction at Oceano, California, during the 2003 San Simeon earthquake. Bulletin of the Seismological Society of America, 95(6), 2396-2411.

Idriss, I. (1999). An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential. Proc., TRB Worshop on New Approaches to Liquefaction, Pubbl. n. FHWA-RD-99-165, Federal Highway Administation.

Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2), 115-130.

Idriss, I., & Boulanger, R. (2008). Soil liquefaction during earthquakes. MNO, 12.

Idriss, I., & Boulanger, R. W. (2010). SPT-based liquefaction triggering procedures. Rep. UCD/CGM-10, 2, 4-13.

Ishihara, K. (1985). Stability of natural deposits during earthquakes. Paper presented at the Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering.

Ishihara, K., & Yoshimine, M. (1992). Evaluation of settlements in sand deposits following liquefaction during earthquakes. SOILS AND FOUNDATIONS, 32(1), 173-188.

Ishihara, K., Araki, K., & Bradley, B. (2011). Characteristics of liquefaction induced damage in the 2011 great east Japan Earthquake. Paper presented at the International Conference on Geotechnics for Sustainable Development (Geotec), Hanoi, Vietnam.

Iwasaki, T., Arakawa, T., & Tokida, K.-I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58.

Jefferies, M. G., & Davies, M. P. (1993). Use of CPTU to estimate equivalent SPT N 60. Geotechnical Testing Journal, 16(4), 458-468.

Jefferies, M., & Been, K. (2006). Soil Liquefaction: A Critical State Approach: CRC Press.

Juang, C. H., Chen, C.-H., & Mayne, P. (2008). CPTu simplified stress-based model for evaluating soil liquefaction potential. SOILS AND FOUNDATIONS, 48, 755-770.

Juang, C. H., Ching, J., Ku, C. S., & Hsieh, Y. H. (2012). Unified CPTu-based probabilistic model for assessing probability of liquefaction of sand and clay. Géotechnique, 62(10), 877-892.

Juang, C. H., ChingJianye, WangLei, KhoshnevisanSara, & KuChih-Sheng. (2013). Simplified procedure for estimation of liquefaction-induced settlement and site-specific probabilistic settlement exceedance curve using cone penetration test (CPT).

Kavazanjian, E., Andrade, J., Arulmoli, K., Atwater, B., Christian, J., Green, R., Wang, Y. (2016). State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences.

Khoshnevisan, S., Juang, H., Zhou, Y.-G., & Gong, W. (2015). Probabilistic assessment of liquefaction-induced lateral spreads using CPT — Focusing on the 2010–2011 Canterbury earthquake sequence. Engineering Geology, 192, 113-128.

Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Upper Saddle River, New Jersey, USA: Prentice Hall.

Ku, C.-S., Juang, C. H., Chang, C.-W., & Ching, J. (2012). Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application. Canadian Geotechnical Journal, 49(1), 27-44.

Ku, C. S., & Juang, C. H. (2012). Liquefaction and cyclic softening potential of soils – a unified piezocone penetration testing-based approach. Géotechnique, 62(5), 457-461.

Mogami, T., & Kubo, K. (1953). The behavior of sand during vibration. Proc. 3rd ICSMFE, 1, 152-155.

Rashidian, V., & Gillins, D. T. (2018). Modification of the liquefaction potential index to consider the topography in Christchurch, New Zealand. Engineering Geology, 232, 68-81.

Rauch, A. F., & Martin, J. R. (2000). EPOLLS Model for Predicting Average Displacements on Lateral Spreads. Journal of Geotechnical and Geoenvironmental Engineering, 126(4), 360-371.

Robertson, P. K., & Wride, C. E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442-459.

Robertson, P. (2009). Performance based earthquake design using the CPT.

Robertson, P. K., & Cabal, K. L. (2015). Guide to Cone Penetration Testing for Geotechnical Engineering: Gregg Drilling & Testing, Inc.

Schnabel, P. B., Lysmer, J., & Seed, H. B. (1972). SHAKE - A computer program for earthquake analysis of horizontally layered sites, Earthquake Engineering Research Center, University of California, Berkeley.

Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics & Foundations Div.

Seed, H. B., Tokimatsu, K., Harder, L., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(12), 1425-1445.

Stewart, J. P., Kramer, S. L., Kwak, D. Y., Greenfield, M. W., Kayen, R. E., Tokimatsu, K., Bozorgnia, Y. (2016). PEER-NGL project: Open source global database and model development for the next-generation of liquefaction assessment procedures. Soil Dynamics and Earthquake Engineering, 91, 317-328.

Tokimatsu, K., & Seed, H. B. (1987). Evaluation of Settlements in Sands Due to Earthquake Shaking. Journal of Geotechnical Engineering, 113(8), 861-878.

Tonkin, & Taylor. (2013). Liquefaction Vulnerability Study.

Toprak, S., Nacaroglu, E., van Ballegooy, S., Koc, A. C., Jacka, M., Manav, Y., . . . O'Rourke, T. D. (2019). Segmented pipeline damage predictions using liquefaction vulnerability parameters. Soil Dynamics and Earthquake Engineering, 125, 105758.

Wang, W. S. (1980). Some Findings in Soil Liquefaction (Vol. 2).

Yasuda, S., Harada, K., Ishikawa, K., & Kanemaru, Y. (2012). Characteristics of liquefaction in Tokyo Bay area by the 2011 Great East Japan Earthquake. SOILS AND FOUNDATIONS, 52(5), 793-810.

Youd, T. L. (1984). Recurrence of liquefaction at the same site.

Youd, T. L., & Perkins, D. M. (1987). Mapping of Liquefaction Severity Index. 113(11), 1374-1392.

Youd, T. L., Idriss, I. M., Member, A., & Fellow, A. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313.

Youd, T. L., Hansen, C. M., & Bartlett, S. F. (2002). Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement. Journal of Geotechnical & Geoenvironmental Engineering, 128(12), 1007.

Zhang, G., Robertson, P. K., & Brachman, R. W. I. (2002). Estimating liquefaction-induced ground settlements from CPT for level ground. Canadian Geotechnical Journal, 39(5), 1168-1180.

Zhang, G., Robertson, P. K., & Brachman, R. W. I. (2004). Estimating Liquefaction-Induced Lateral Displacements Using the Standard Penetration Test or Cone Penetration Test. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 861-871.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw